如圖:在△ABC中,AD⊥BC于D,AD=BD,CD=DE,E是AD上一點,連結(jié)BE并延長交AC于點F. 求證:(1)BE=AC;(2)BF⊥AC.
分析:(1)由AD⊥BC可得到∠BDE=∠ADC=90°,又知DE=CD,AD=BD,所以△BDE≌△ADC,從而得出BE=AC.
(2)根據(jù)全等三角形的性質(zhì)可得∠EBD=∠DAC,然后再根據(jù)∠EBD+∠DEB=90°,∠BED=∠AEF可得∠AEF+∠EAF=90°,進(jìn)而得到BF⊥AC.
解答:證明:(1)∵AD⊥BC,
∴∠BDE=∠ADC=90°.
在△BDE和△ADC中,
AD=BD
∠ADC=∠BDE=90°
CD=DE

∴△BDE≌△ADC(SAS).
∴BE=AC.

(2)∵△BDE≌△ADC,
∴∠EBD=∠DAC,
∵∠ADB=90°,
∴∠EBD+∠DEB=90°,
∵∠BED=∠AEF,
∴∠AEF+∠EAF=90°,
∴BF⊥AC.
點評:此題主要考查了全等三角形的判定與性質(zhì),關(guān)鍵是掌握全等三角形的判定與性質(zhì)定理.證明三角形全等是證明線段和角相等的重要工具.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案