【題目】如圖,PA,PB是⊙O的切線,A,B為切點,AC是⊙O的直徑.
(1)若∠BAC=25°,求∠P的度數(shù);
(2)若∠P=60°,PA=2,求AC的長.
【答案】(1)50°;(2)4.
【解析】
(1)利用切線的性質求出∠PAB=90°﹣∠BAC=90°﹣25°=65°,根據切線長定理得到∠PBA=∠PAB=65°,再根據三角形的內角和定理求出∠P的度數(shù);
(2)連接BC,證明△PAB是等邊三角形,求出,∠PAB=60°,由AC是⊙O的直徑得到∠ABC=90°,利用AC=求出答案.
(1)∵PA為切線,
∴OA⊥PA,
∴∠CAP=90°,
∴∠PAB=90°﹣∠BAC=90°﹣25°=65°.
∵PA,PB是⊙O的切線,
∴PA=PB,
∴∠PBA=∠PAB=65°,
∴∠P=180°﹣65°﹣65°=50°;
(2)連接BC.
∵PA,PB是⊙O的切線,
∴PA=PB,∠CAP=90°.
∵∠P=60°,
∴△PAB是等邊三角形,
∴,∠PAB=60°,
∴∠CAB=30°.
∵AC是⊙O的直徑,
∴∠ABC=90°,
∴AC4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點E是BC的中點,連接AE與對角線BD交于點G,連接CG并延長,交AB于點F,連接DE交CF于點H,連接AH.以下結論:①CF⊥DE;②;③AD=AH;④GH=,其中正確結論的序號是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一塊直角三角板ABC中,∠C=90°,∠A=30°,BC=1,將另一個含30°角的△EDF的30°角的頂點D放在AB邊上,E、F分別在AC、BC上,當點D在AB邊上移動時,DE始終與AB垂直,若△CEF與△DEF相似,則AD= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與兩坐標軸分別交于點A、B、C,直線y=﹣x+4經過點B,與y軸交點為D,M(3,﹣4)是拋物線的頂點.
(1)求拋物線的解析式.
(2)已知點N在對稱軸上,且AN+DN的值最。簏cN的坐標.
(3)在(2)的條件下,若點E與點C關于對稱軸對稱,請你畫出△EMN并求它的面積.
(4)在(2)的條件下,在坐標平面內是否存在點P,使以A、B、N、P為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A1(1,1),將點A1向上平移1個單位長度,再向右平移2個單位長度得到點A2;將點A2向上平移2個單位長度,再向右平移4個單位長度得到點A3;將點A3向上平移4個單位長度,再向右平移8個單位長度得到點A4,…按這個規(guī)律平移下去得到點An(n為正整數(shù)),則點An的坐標是( )
A.(2n,2n﹣1)B.(2n﹣1,2n)
C.(2n﹣1,2n+1)D.(2n﹣1,2n﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為挑選優(yōu)秀同學參加云南省級英語聽說能力競賽,某中學舉行了“英語單詞聽寫”競賽,每位學生聽寫單詞99個,比賽結束后隨機抽查部分學生的聽寫結果,以下是根據抽查結果繪制的統(tǒng)計圖的一部分.
根據以上信息解決下列問題:
(1)本次共隨機抽查了 名學生,并補全頻數(shù)分布直方圖;
(2)若把每組聽寫正確的個數(shù)用這組數(shù)據的組中值代替,則被抽查學生聽寫正確的個數(shù)的平均數(shù)是多少?
(3)該校共有3000名學生,如果聽寫正確的個數(shù)少于60個定為不合格,請你估計這所學校本次競賽聽寫不合格的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,G、A、B在同一直線上,點E在AD上,連接DG,BE.
(1)證明:BE=DG;
(2)發(fā)現(xiàn):當正方形AEFG繞點A旋轉,如圖②所示,判斷BE與DG的數(shù)量關系和位置關系,并說明理由;
(3)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時,判斷BE與DG的數(shù)量關系和位置關系是否與(2)的結論相同,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com