【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點(diǎn)D,OAB上一點(diǎn),經(jīng)過(guò)點(diǎn)AD⊙O分別交AB,AC于點(diǎn)E,F,連接OFAD于點(diǎn)G

(1)求證:BC⊙O的切線;

(2)求證:;

(3)BE=8,sinB=,求AD的長(zhǎng),

【答案】1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3

【解析】

(1)連接OD,由AD為角平分線得到一對(duì)角相等,再由等邊對(duì)等角得到一對(duì)角相等,等量代換得到內(nèi)錯(cuò)角相等,進(jìn)而得到ODAC平行,得到ODBC垂直,即可得證;(2)連接DF,證明△ABD∽△ADF,,由相似三角形的性質(zhì)即可證得結(jié)論;(3)連接EF,設(shè)圓的半徑為r,由sinB的值,利用銳角三角函數(shù)定義求出r的值,由直徑所對(duì)的圓周角為直角,得到EFBC平行,得到sin∠AEF=sinB,進(jìn)而求出AF的長(zhǎng),再根據(jù)(2)的結(jié)論即可求得AD的長(zhǎng).

1)如圖,連接OD,

AD為∠BAC的角平分線,

∴∠BAD=CAD,

OA=OD,

∴∠ODA=OAD,

∴∠ODA=CAD,

ODAC,

∵∠C=90°,

∴∠ODC=90°,

ODBC,

BC為圓O的切線;

2)連接DF,由(1)知BC為圓O的切線,

∴∠FDC=DAF,

∴∠CDA=CFD,

∴∠AFD=ADB,

∵∠BAD=DAF,

∴△ABD∽△ADF,

AD2=ABAF;

(3)連接EF,在RtBOD中,sinB=,

設(shè)圓的半徑為r,可得

解得:r=5,

AE=10,AB=18,

AE是直徑,

∴∠AFE=C=90°,

EFBC,

∴∠AEF=B,

sinAEF=,

AF=AEsinAEF=10×=

AD2=ABAF

AD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)準(zhǔn)備購(gòu)買筆和本子送給農(nóng)村希望小學(xué)的同學(xué),在市場(chǎng)上了解到某種本子的單價(jià)比某種筆的單價(jià)少4元,且用30元買這種本子的數(shù)量與用50元買這種筆的數(shù)量相同.

(1)求這種筆和本子的單價(jià);

(2)該同學(xué)打算用自己的100元壓歲錢購(gòu)買這種筆和本子,計(jì)劃100元?jiǎng)偤糜猛,并且筆和本子都買,請(qǐng)列出所有購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是24,則OAB的面積是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰直角三角形ABC,∠BAC90°,D、EBC上的兩點(diǎn),且BDCE,過(guò)D、EDM、EN分別垂直ABAC,垂足為M、N,交與點(diǎn)F,連接AD、AE.其中四邊形AMFN是正方形;ABE≌△ACD;CE2+BD2DE2;當(dāng)∠DAE45°時(shí),AD2DECD.正確結(jié)論有(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CEABCD的邊AB的垂直平分線,垂足為點(diǎn)O,CEDA的延長(zhǎng)線交于點(diǎn)E、連接AC,BE,DODOAC交于點(diǎn)F,則下列結(jié)論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AFBE23;④S四邊形AFOESCOD23.其中正確的結(jié)論有( 。﹤(gè).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的圖形是一個(gè)軸對(duì)稱圖形,且每個(gè)角都是直角,小明用n個(gè)這樣的圖形,按照如圖(2)所示的方法玩拼圖游戲,兩兩相扣,相互間不留空隙.

1)當(dāng)n=5時(shí),小明拼出來(lái)的圖形總長(zhǎng)度是 .(用含ab的式子表示)

2)當(dāng)a=4,b=3時(shí),小明用n個(gè)這樣的圖形拼出來(lái)的圖形總長(zhǎng)度為28,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線和拋物線 (n為正整數(shù)).

(1)拋物線與x軸的交點(diǎn)坐標(biāo)為 .頂點(diǎn)坐標(biāo)為 .

(2)當(dāng)n=1時(shí),請(qǐng)解答下列問(wèn)題:

①拋物線與x軸的交點(diǎn)坐標(biāo)為 .頂點(diǎn)坐標(biāo)為 .請(qǐng)寫(xiě)出拋物線y,的一條相同的性質(zhì).

②當(dāng)直線與拋物線y,,共有4個(gè)交點(diǎn)時(shí),求m的取值范圍

(3)若直線y=k(k<0)與拋物線y,共有4個(gè)交點(diǎn),從左至右依次標(biāo)記為點(diǎn)A,B,C,D,當(dāng)AB=BC=CD時(shí),求出k,n之間滿足的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】表中所列、7對(duì)值是二次函數(shù)圖象上的點(diǎn)所對(duì)應(yīng)的坐標(biāo),其中

6

11

11

6

根據(jù)表中提供約信息,有以下4個(gè)判斷:①;②;③當(dāng)時(shí),的值是;④;其中判斷正確的是(

A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,有一個(gè)由六個(gè)邊長(zhǎng)為1的正方形組成的圖案,其中點(diǎn)A,B的坐標(biāo)分別為(3,5),(6,1).若過(guò)原點(diǎn)的直線l將這個(gè)圖案分成面積相等的兩部分,則直線l的函數(shù)解析式為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案