如圖,已知拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,在其對(duì)稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)M是拋物線上一點(diǎn),以B、C、D、M為頂點(diǎn)的四邊形是直角梯形,試求出點(diǎn)M的坐標(biāo).
(1)∵拋物線與y軸交于點(diǎn)C(0,3), ∴設(shè)拋物線解析式為 1分 根據(jù)題意,得,解得 ∴拋物線的解析式為 2分 (2)存在. 3分 由得,D點(diǎn)坐標(biāo)為(1,4),對(duì)稱軸為x=1. 4分 、偃粢訡D為底邊,則PD=PC,設(shè)P點(diǎn)坐標(biāo)為(x,y),根據(jù)勾股定理, 得,即y=4-x. 5分 又P點(diǎn)(x,y)在拋物線上,∴,即 6分 解得,,應(yīng)舍去.∴. 7分 ∴,即點(diǎn)P坐標(biāo)為. 8分 、谌粢訡D為一腰,因?yàn)辄c(diǎn)P在對(duì)稱軸右側(cè)的拋物線上,由拋物線對(duì)稱性知,點(diǎn)P與點(diǎn)C關(guān)于直線x=1對(duì)稱,此時(shí)點(diǎn)P坐標(biāo)為(2,3). ∴符合條件的點(diǎn)P坐標(biāo)為或(2,3). 9分 (3)由B(3,0),C(0,3),D(1,4),根據(jù)勾股定理, 得CB=,CD=,BD=, 10分 ∴, ∴∠BCD=90°, 11分 設(shè)對(duì)稱軸交x軸于點(diǎn)E,過C作CM⊥DE,交拋物線于點(diǎn)M,垂足為F,在Rt△DCF中, ∵CF=DF=1, ∴∠CDF=45°, 由拋物線對(duì)稱性可知,∠CDM=2×45°=90°,點(diǎn)坐標(biāo)M為(2,3), ∴DM∥BC, ∴四邊形BCDM為直角梯形, 12分 由∠BCD=90°及題意可知, 以BC為一底時(shí),頂點(diǎn)M在拋物線上的直角梯形只有上述一種情況; 以CD為一底或以BD為一底,且頂點(diǎn)M在拋物線上的直角梯形均不存在. 綜上所述,符合條件的點(diǎn)M的坐標(biāo)為(2,3). 13分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com