(2003•舟山)如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度a為10米),圍成中間隔有一道籬笆的長方形花圃.設花圃的寬AB為x米,面積為S米2
(1)求S與x的函數(shù)關系式;
(2)如果要圍成面積為45米2的花圃,AB的長是多少米?
(3)能圍成面積比45米2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.

【答案】分析:(1)可先用籬笆的長表示出BC的長,然后根據(jù)矩形的面積=長×寬,得出S與x的函數(shù)關系式.
(2)根據(jù)(1)的函數(shù)關系式,將S=45代入其中,求出x的值即可.
(3)可根據(jù)(1)中函數(shù)的性質和自變量的取值范圍得出符合條件的方案.
解答:解:(1)設寬AB為x米,則BC為(24-3x)米
這時面積S=x(24-3x)=-3x2+24x.

(2)由條件-3x2+24x=45化為x2-8x+15=0
解得x1=5,x2=3
∵0<24-3x≤10得≤x<8
∴x=3不合題意,舍去
即花圃的寬為5米.

(3)S=-3x2+24x=-3(x2-8x)=-3(x-4)2+48(≤x<8)
∴當時,S有最大值48-3(-4)2=46
故能圍成面積比45米2更大的花圃.圍法:24-3×=10,花圃的長為10米,寬為米,這時有最大面積平方米.
點評:本題考查了一元二次方程,二次函數(shù)的綜合應用,根據(jù)已知條件列出二次函數(shù)式是解題的關鍵.要注意題中自變量的取值范圍不要丟掉.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(02)(解析版) 題型:填空題

(2003•舟山)如圖,直線y=x+2與x軸交于點A,與y軸交于點B,AB⊥BC,且點C在x軸上,若拋物線y=ax2+bx+c以C為頂點,且經(jīng)過點B,則這條拋物線的關系式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2003年浙江省舟山市中考數(shù)學試卷(解析版) 題型:填空題

(2003•舟山)如圖,直線y=x+2與x軸交于點A,與y軸交于點B,AB⊥BC,且點C在x軸上,若拋物線y=ax2+bx+c以C為頂點,且經(jīng)過點B,則這條拋物線的關系式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2003•舟山)如圖,⊙A和⊙B是外離兩圓,⊙A的半徑長為2,⊙B的半徑長為1,AB=4,P為連接兩圓圓心的線段AB上的一點,PC切⊙A于點C,PD切⊙B于點D.
(1)若PC=PD,求PB的長.
(2)試問線段AB上是否存在一點P,使PC2+PD2=4?如果存在,問這樣的P點有幾個并求出PB的值;如果不存在,說明理由.
(3)當點P在線段AB上運動到某處,使PC⊥PD時,就有△APC∽△PBD.請問:除上述情況外,當點P在線段AB上運動到何處(說明PB的長為多少;或PC、PD具有何種關系)時,這兩個三角形仍相似;并判斷此時直線CP與⊙B的位置關系,證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年浙江省舟山市中考數(shù)學試卷(解析版) 題型:選擇題

(2003•舟山)如圖是人字型屋架的設計圖,由AB,AC,BC,AD四根鋼條焊接而成,其中A,B,C,D均為焊接點,且AB=AC,D為BC的中點,現(xiàn)在焊接所需的四根鋼條已截好,且已標出BC的中點,如果接工身邊只有檢驗直角的角尺,那么為了準確快速地焊接,他首先應取的兩根鋼條及焊接點是( )

A.AB和BC焊接點B
B.AB和AC焊接點A
C.AB和AD焊接點A
D.AD和BC焊接點D

查看答案和解析>>

科目:初中數(shù)學 來源:2003年浙江省舟山市中考數(shù)學試卷(解析版) 題型:選擇題

(2003•舟山)如圖,用8塊相同的長方形地磚拼成一個矩形地面,則每塊長方形地磚的長和寬分別是( )

A.48cm,12cm
B.48cm,16cm
C.44cm,16cm
D.45cm,15cm

查看答案和解析>>

同步練習冊答案