在平面直角坐標(biāo)系xOy中,拋物線y=-x2-(m-1)x+m2-6交x軸負(fù)半軸于點A,交y軸正半軸于點B(0,3),頂點C位于第二象限,連接AB,AC,BC.
(1)求拋物線的解析式;
(2)點D是y軸正半軸上一點,且在B點上方,若∠DCB=∠CAB,請你猜想并證明CD與AC的位置關(guān)系;
(3)設(shè)與△AOB重合的△EFG從△AOB的位置出發(fā),沿x軸負(fù)方向平移t個單位長度(0<t≤3)時,△EFG與△ABC重疊部分的面積為S,求S與t之間的函數(shù)關(guān)系式.
分析:(1)將點B的坐標(biāo)代入可得出m的值,繼而得出拋物線的解析式;
(2)分別求出點A、B、C的坐標(biāo),根據(jù)勾股定理的逆定理可判斷出∠ABC=90°,繼而利用等量代換可得出∠DCB+∠ACB=90°,繼而得出結(jié)論.
(3)過點B作BF∥x軸,交AC于點K,求出點K的坐標(biāo),然后根據(jù)K的橫坐標(biāo),可分類討論,①當(dāng)0<t<
3
2
時,②當(dāng)
3
2
≤t≤3時,分別表示出陰影部分的面積即可.
解答:解:(1)∵拋物線y=-x2-(m-1)x+m2-6與y軸交于點B(0,3),
∴m2-6=3.
∴m=±3.
∵拋物線的頂點在第二象限,
∴m=3.
∴拋物線的解析式為y=-x2-2x+3.
(2)猜想:CD⊥AC,如圖(1):

證明如下:
∵A(-3,0),B(0,3),C(-1,4),
∴AB=3
2
,AC=2
5
,BC=
2

∴AB2+BC2=AC2,
∴∠ABC=90°,
∴∠CAB+∠ACB=90°,
又∵∠CAB=∠DCB,
∴∠DCB+∠ACB=90°,
∴CD⊥AC.
(3)設(shè)直線AC的解析式為y=kx+b,
將A(-3,0),C(-1,4)代入可得:
-3k+b=0
-k+b=4
,
解得:
k=2
b=6
,
即直線AC的解析式為y=2x+6.
過B作BK∥x軸,交AC于點K,
則點K的坐標(biāo)為(-
3
2
,3),
①當(dāng)0<t<
3
2
時,如圖(2),EF交AB于點Q,GF交AC于點N,過N做MP∥FE交x軸于P點,交BF的延長線點M,

由△AGN∽△KFN,得
AG
KF
=
PN
MN
,
t
3
2
-t
=
PN
3-PN
,
解得PN=2t,
則S陰影=S△FGE-S△QAE-S△AGN=
1
2
×3×3-
1
2
(3-t)2-
1
2
t×2t
=-
3
2
t2+3t.

②當(dāng)
3
2
≤t≤3時,如圖(3),EF交AB于點N,交AC于點M,BF交AC于點P,

由△AME∽△PMF,
AE
PF
=
ME
MF

3-t
t-
3
2
=
ME
3-ME
,
解得ME=2(3-t),
∴S 陰影=S△MAE-S△NAE=
1
2
×
(3-t)×2(3-t)-
1
2
(3-t)2=
1
2
t2-3t+
9
2

綜上所述:S=
-
3
2
t2+3t(0<t<
3
2
)
1
2
t2-3t+
9
2
(
3
2
≤t≤3)
點評:本題屬于二次函數(shù)的綜合題,涉及了待定系數(shù)法求函數(shù)解析式、勾股定理的逆定理及分段函數(shù)的知識,綜合考察的知識點較多,對于此類綜合題目,往往前兩問都比較簡單,同學(xué)們不要碰到這樣的綜合題就退縮.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點A(2,-2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有
4
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點.
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于C 點,D是線段BC上一點(不與點B、C重合),若以B、O、D為頂點的三角形與△BAC相似,求點D的坐標(biāo);
(3)點P在y軸上,點M在此拋物線上,若要使以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
(1)求此拋物線的函數(shù)表達式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為7
2
?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點P,使△AOP與△AOB相似,則符合條件的點P共有
5
5
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊答案