在△ABC中,∠ACB=90°,BD是△ABC的角平分線,P是射線AC上任意一點 (不與A、D、C三點重合),過點P作PQ⊥AB,垂足為Q,交直線BD于E.
(1)如圖①,當(dāng)點P在線段AC上時,說明∠PDE=∠PED.
(2)作∠CPQ的角平分線交直線AB于點F,則PF與BD有怎樣的位置關(guān)系?畫出圖形并說明理由.
精英家教網(wǎng)
(1)∵PQ⊥AB,
∴∠EQB=∠C=90°,
∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°,
∵BD為∠ABC的平分線,
∴∠CBD=∠EBQ,
∵∠PED=∠BEQ,
∴∠PDE=∠PED;
(2)當(dāng)P在線段AC上時,如圖1所示,此時PFBD,

精英家教網(wǎng)

理由為:∵∠PDE=∠PED,
∴PD=PE,
∵PF為∠CPQ的平分線,∠CPQ為△PDE的外角,
∴∠CPF=∠QPF=∠PDE=∠PED,
∴PFBD;
當(dāng)P在線段AC延長線上時,如圖2所示,PF⊥BD,
理由為:∵∠PDE=∠PED,
∴PD=PE,
∵PM為∠CPQ的平分線,
∴PF⊥BD.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=8,BC=6,AB=10,則△ABC的外接圓半徑長為( 。
A、10B、5C、6D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、在△ABC中,AC=5,中線AD=4,那么邊AB的取值范圍為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,AC與⊙O相切于點A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2
;
(3)求圖中陰影部分的面積(結(jié)果用π表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)二模)如圖,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA為半徑的⊙C與AB、BC分別交于點D、E,聯(lián)結(jié)AE,DE.
(1)求BC的長;
(2)求△AED的面積.

查看答案和解析>>

同步練習(xí)冊答案