用配方法將函數(shù)y=
1
2
x2-2x+1寫成y=a(x-h)2+k的形式是( 。
A、y=
1
2
(x-2)2-1
B、y=
1
2
(x-1)2-1
C、y=
1
2
(x-2)2-3
D、y=
1
2
(x-1)2-3
分析:利用配方法先提出二次項(xiàng)系數(shù),在加上一次項(xiàng)系數(shù)的一半的平方來(lái)湊完全平方式,把一般式轉(zhuǎn)化為頂點(diǎn)式.
解答:解:y=
1
2
x2-2x+1=
1
2
(x2-4x+4)-2+1=
1
2
(x-2)2-1
故選A.
點(diǎn)評(píng):二次函數(shù)的解析式有三種形式:
(1)一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù));
(2)頂點(diǎn)式:y=a(x-h)2+k;
(3)交點(diǎn)式(與x軸):y=a(x-x1)(x-x2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用配方法將函數(shù)y=2x2+3x+1化成y=a(x+m)2+k的形式,則y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用配方法將函數(shù)y=
1
2
x2-x-2寫成y=a(x-h)2+k的形式是( 。
A、y= 
1
2
(x-1)2-
5
2
B、y=
1
2
(x-2)2-3
C、y=
1
2
(x-2)2-1
D、y=
1
2
x2-2x+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知二次函數(shù)y=-
1
2
x2+x+
3
2

(1)用配方法將函數(shù)解析式化為y=a(x-h)2+k的形式;
(2)當(dāng)x為何值時(shí),函數(shù)值y=0;
(3)在所給坐標(biāo)系中畫出該函數(shù)的圖象;
(4)觀察圖象,指出使函數(shù)值y>
3
2
時(shí)自變量x的取值范圍、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•大連)已知:二次函數(shù)y=-x2+2x+3
(1)用配方法將函數(shù)關(guān)系式化為y=a(x-h)2+k的形式,并指出函數(shù)圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(2)畫出所給函數(shù)的圖象;
(3)觀察圖象,指出使函數(shù)值y>3的自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案