如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點O為坐標(biāo)原點建立坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動點它們同時分別從點A、O向B點勻速運動,速度均為1cm/秒,設(shè)P、Q移動時間為t(0≤t≤4)
(1)過點P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運動時間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時,S有最大值?最大是多少?
(3)當(dāng)t為何值時,△OPQ為直角三角形?
(4)證明無論t為何值時,△OPQ都不可能為正三角形.若點P運動速度不變改變Q的運動速度,使△OPQ為正三角形,求Q點運動的速度和此時t的值.

(1)證明:∵∠AOB=90°,PM⊥OA,
∴PM∥OB,
∴AM:AO=PM:BO=AP:AB,
∵OA=3cm,OB=4cm,
∴在Rt△OAB中,AB===5cm,
∵AP=1•t=t,
,
∴PM=t,OM=OA-AM=3-t,
∴點P的坐標(biāo)為(t,3-t);

(2)∵OQ=1•t=tcm,
∴S△OPQ=×t×(3-t)=-t2+t
=-(t-2+,
∴當(dāng)t=時,S有最大值,最大值為;

(3)作PN⊥OB于N,
∵△OPQ為直角三角形,
∴△PON∽△QPN,
,
∴(3-t)2=t(t-t),
解得t1=3,t2=15(舍去);

(4)∵ON=t,OQ=t,
∴0Q≠2ON,
∴無論t為何值時,△OPQ都不可能為正三角形;
要使△OPQ為正三角形,
則0Q=2ON=t,
∴Q點的速度為cm/s,
此時3-t=t•
解得t=
分析:(1)先證明PM∥OB,再根據(jù)相似三角形對應(yīng)邊成比例證明即可;利用勾股定理求出AB的長度,而AP=t,再根據(jù)對應(yīng)邊成比例求出AM、PM的值,P點坐標(biāo)即可得到;
(2)根據(jù)三角形的面積公式,P點縱坐標(biāo)與OQ的長度的積的一半就是△OPQ面積,整理后根據(jù)二次函數(shù)的最值問題求解即可;
(3)作OQ邊上的高,根據(jù)△PON和△QPN相似,相似三角形對應(yīng)邊成比例,列式求解;
(4)根據(jù)正三角形的性質(zhì)PN垂直平分邊OQ,所以無論t為何值時,△OPQ都不可能為正三角形;改變Q點速度根據(jù)正三角形的性質(zhì),0Q=2ON,PN=OQ分別列式求解即可得到Q點運動速度和時間t.
點評:本題綜合性較強主要利用相似三角形對應(yīng)邊成比例的性質(zhì),等邊三角形的高與底邊的性質(zhì),只要肯于動腦也不難解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點O為坐標(biāo)原點建立坐標(biāo)系,設(shè)P、Q精英家教網(wǎng)分別為AB、OB邊上的動點它們同時分別從點A、O向B點勻速運動,速度均為1cm/秒,設(shè)P、Q移動時間為t(0≤t≤4)
(1)過點P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運動時間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時,S有最大值?最大是多少?
(3)當(dāng)t為何值時,△OPQ為直角三角形?
(4)證明無論t為何值時,△OPQ都不可能為正三角形.若點P運動速度不變改變Q的運動速度,使△OPQ為正三角形,求Q點運動的速度和此時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函數(shù)y=
kx
在第一象限內(nèi)的圖象分別交OA、AB于點C和點D,連結(jié)OD,若S△BOD=4,
(1)求反比例函數(shù)解析式;
(2)求C點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•咸寧)如圖,在Rt△AOB中,OA=OB=3
2
,⊙O的半徑為1,點P是AB邊上的動點,過點P作⊙O的一條切線PQ(點Q為切點),則切線PQ的最小值為
2
2
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安溪縣質(zhì)檢)如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,將△AOB沿x軸依次以點A、B、O為旋轉(zhuǎn)中心從①的位置順時針旋轉(zhuǎn),分別得②、③、…,則:
(1)旋轉(zhuǎn)得到圖③的直角頂點的坐標(biāo)為
(12,0)
(12,0)
;
(2)旋轉(zhuǎn)得到圖⑩的直角頂點的坐標(biāo)為
(36,0)
(36,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南崗區(qū)一模)如圖,在Rt△AOB中,∠AOB=90°,且AO=8,BO=6,P是線段AB上一個動點,PE⊥A0于E,PF⊥B0于F.設(shè)
PE=x,矩形PFOE的面積為S
(1)求出S與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時,矩形PFOE的面積S最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案