如圖,拋物線y=-x2+(m+2)x-3(m-1)交x軸于點A、B(A在B的右邊),直線y=(m+1)x-3經過點A.若m<1.
(1)求拋物線和直線的解析式;
(2)直線y=kx(k<0)交直線y=(m+1)x-3于點P,交拋物線y=-x2+(m+2)x-3(m-1)于點M,過M點作x軸垂線,垂足為D,交直線y=(m+1)x-3于點N.問:△PMN能否為等腰三角形?若能,求k的值;若不能,請說明理由.
(1)拋物線解析式為y=-x2+2x+3.直線解析式為y=x-3.

(2)如圖,點C坐標為(0,-3),∠PNM=45°若△PNM為等腰三角形,且k<0,則PN=PM或PN=MN.

當PN=PM時,OD=DM,設M(m,-m),k=-1,
當PN=MN時,過點P作PH垂直y軸于點H.
PH=
3
2
2
OH=3-
3
2
2

點P坐標為(
3
2
2
,
3
2
2
-3)
則k=1-
2

綜上所述,△PMN能為等腰三角形,k的值為-1或1-
2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,從O點射出炮彈落地點為D,彈道軌跡是拋物線,若擊中目標C點,在A測C的仰角∠BAC=45°,在B測C的仰角∠ABC=30°,AB相距(1+
3
)km,OA=2km,AD=2km.
(1)求拋物線解析式;
(2)求拋物線對稱軸和炮彈運行時最高點距地面的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線C1的頂點坐標是D(1,4),且經過點C(2,3),又與x軸交于點A、E(點A在點E左邊),與y軸交于點B.
(1)拋物線C1的表達式是______;
(2)四邊形ABDE的面積等于______;
(3)問:△AOB與△DBE相似嗎?并說明你的理由;
(4)設拋物線C1的對稱軸與x軸交于點F.另一條拋物線C2經過點E(C2與C1不重合),且頂點為M(a,b),對稱軸與x軸交于點G,并且以M、G、E為頂點的三角形與以點D、E、F為頂點的三角形全等,求a、b的值.(只需寫出結果,不必寫解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)在足球比賽中,當守門員遠離球門時,進攻隊員常常使用“吊射”的戰(zhàn)術(把球高高地挑過守門員的頭頂射入球門).一位球員在離對方球門30米的M處起腳吊射,假如球飛行的路線是一條拋物線,在離球門14米時,足球到達最大高度
32
3
米,如圖,以球門底部為坐標原點建立坐標系,球門PQ的高度為2.44米,試通過計算說明,球是否會進入球門?
(2)在(1)中,若守門員站在距球門2米遠處,而守門員跳起后最多能摸到2.75米高處,他能否在空中截住這次吊射?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2-
1
3
x+2
與x軸交于點A和點B,與y軸交于點C,已知點B的坐標為(3,0).
(1)求a的值和拋物線的頂點坐標;
(2)分別連接AC、BC.在x軸下方的拋物線上求一點M,使△AMC與△ABC的面積相等;
(3)設N是拋物線對稱軸上的一個動點,d=|AN-CN|.探究:是否存在一點N,使d的值最大?若存在,請直接寫出點N的坐標和d的最大值;若不存在,請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)y=-
1
2
x2+mx+n的圖象與y軸交于點N,其頂點M在直線y=-
3
2
x上運動,O為坐標原點.

(1)當m=-2時,求點N的坐標;
(2)當△MON為直角三角形時,求m、n的值;
(3)已知△ABC的三個頂點的坐標分別為A(-4,2),B(-4,-3),C(-2,2),當拋物線y=-
1
2
x2+mx+n在對稱軸左側的部分與△ABC的三邊有公共點時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

春節(jié)期間某水庫養(yǎng)殖場為適應市場需求,連續(xù)用20天時間,采用每天降低水位以減少捕撈成本的辦法,對水庫中某種鮮魚進行捕撈、銷售.九(1)班數(shù)學建模興趣小組根據調查,整理出第x天(1≤x≤20且x為整數(shù))的捕撈與銷售的相關信息如表:
鮮魚銷售單價(元/kg)20
單位捕撈成本(元/kg)5-
x
5
捕撈量(kg)950-10x
(1)在此期間該養(yǎng)殖場每天的捕撈量與前一天末的捕撈量相比是如何變化的?
(2)假定該養(yǎng)殖場每天捕撈和銷售的鮮魚沒有損失,且能在當天全部售出,求第x天的收入y(元)與x(天)之間的函數(shù)關系式?(當天收入=日銷售額-日捕撈成本)
(3)試說明(2)中的函數(shù)y隨x的變化情況,并指出在第幾天y取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

崇啟大橋使啟東市融入了上海一小時經濟區(qū),為啟東經濟的騰飛打下了堅實的基礎,建成的大橋將是世界上最長的斜拉索大橋,如圖,橋梁的兩條鋼纜具有相同的拋物線形狀,建立如圖所示的直角坐標系,左邊的一條拋物線可以用y=0.0225x2+0.9x+10表示,而且左右兩條拋物線關于y軸對稱.
(1)鋼纜最低點到橋面的距離是多少?
(2)兩條鋼纜的最低點之間的距離是多少?
(3)寫出右邊鋼纜的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

飛機著陸后滑行的距離s(單位:米)與滑行的時間t(單位:秒)之間的函數(shù)關系式是s=60t-1.5t2.飛機著陸后滑行______秒才能停下來.

查看答案和解析>>

同步練習冊答案