【題目】如圖,在等邊三角形ABC中,AE=CD,AD、BE交于Q點(diǎn),BP⊥AD于P點(diǎn).
求證:
(1)△BAE≌△ACD;
(2)∠BQP=60°;
(3)BQ=2PQ.
【答案】
(1)證明:∵△ABC是等邊三角形,
∴AB=AC,∠BAE=∠C=60°,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS)
(2)∵△ABE≌△CAD
∴∠1=∠2,
∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°
(3)∵BQ⊥AD,
∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,
∴BP=2PQ.
【解析】(1)由AB=AC,∠BAE=∠C,AE=CD,即可證明.(2)根據(jù)三角形的外角的性質(zhì),∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,即可證明.(3)利用直角三角形30度性質(zhì)即可解決問(wèn)題.
【考點(diǎn)精析】利用等邊三角形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A.擲一枚硬幣,正面一定朝上
B.某種彩票中獎(jiǎng)概率為1%,是指買100張彩票一定有1張中獎(jiǎng)
C.旅客上飛機(jī)前的安檢應(yīng)采用抽樣調(diào)查
D.方差越大,數(shù)據(jù)的波動(dòng)越大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,高為AD,角平分線為AE,若∠B=28°,∠ACD=52°,求∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半圓O的直徑AB=4,以長(zhǎng)為2的弦PQ為直徑,向點(diǎn)O方向作半圓M,其中P點(diǎn)在弧AQ上且不與A點(diǎn)重合,但Q點(diǎn)可與B點(diǎn)重合.
(1)弧AP的長(zhǎng)與弧QB的長(zhǎng)之和為定值l,請(qǐng)直接寫(xiě)出l的值;
(2)請(qǐng)直接寫(xiě)出點(diǎn)M與AB的最大距離,此時(shí)點(diǎn)P,A間的距離;點(diǎn)M與AB的最小距離,此時(shí)半圓M的弧與AB所圍成的封閉圖形面積.
(3)當(dāng)半圓M與AB相切時(shí),求弧AP的長(zhǎng).
(注:結(jié)果保留π,cos 35°=,cos 55°=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解下列不等式,并把解集在數(shù)軸上表示出來(lái).
(1)5(x﹣1)≤3(x+1)
(2)﹣>﹣2
(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了節(jié)約用水,某市決定調(diào)整居民用水收費(fèi)方法,規(guī)定:
①如果每戶每月水不超過(guò)噸,每噸水收費(fèi)元.
②如果每戶每月用水超過(guò)噸,則超過(guò)部分每噸水收費(fèi)元.
小紅看到這種收費(fèi)方法后,想算算她家每月的水費(fèi),但是她不清楚家里每月的用水是否超過(guò)噸.
()如果小紅家每月用水噸,水費(fèi)是多少?如果每月用水噸,水費(fèi)是多少?
()如果字母表示小紅家每月用水的噸數(shù),那么小紅家每月的水費(fèi)該如何用的代數(shù)式表示呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,點(diǎn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)落在射線上,點(diǎn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)落在射線上,點(diǎn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)落在射線上,…,連接、、…,以此作法,則=______度.(用含的代數(shù)式表示, 為正整數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com