點P是△ABC中AB邊上的一點,過點P作直線(不與直線AB重合)截△ABC,使截得的三角形與△ABC相似.滿足這樣條件的直線最多有    條.
【答案】分析:過點P作BC的平行線,作AC的平行線,都可使截得的三角形與原三角形相似;過點P可作直線交邊AC于點E,使得AP:AC=AE:AB,可得△APE∽△ACB,同理截BC邊也可得相似三角形.
解答:解:過P作PE∥BC,則△APE∽△ABC;
同理:△BPE∽△BAC;
過P作PA:AC=AE:AB,則△APE∽△ACB;
同理:△BPE∽△BCA;
故共有4條.
點評:此題考查了相似三角形的判定:
①有兩個對應角相等的三角形相似;
②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;
③三組對應邊的比相等,則兩個三角形相似.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖1,在梯形ABCD中AD∥BC,對角線AC,BD交于點P,則s△PAB=S△PDC,請你用梯形對角線的這一特殊性質,解決下面問題.
在圖2中,點E是△ABC中AB邊上的任意一點,且AE≠BE,過點E畫一條直線,把△ABC分成面積相等的兩部分,保留作圖痕跡,并簡要說明你的方法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、點P是△ABC中AB邊上的一點,過點P作直線(不與直線AB重合)截△ABC,使截得的三角形與△ABC相似.滿足這樣條件的直線最多有
4
條.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、點P是△ABC中AB邊上的一點,過點P作直線(不與直線AB重合)截△ABC,使截得的三角形與原三角形相似,滿足這樣條件的直線最多有( 。

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江蘇省丹陽市初二數(shù)學質量檢測試卷數(shù)學試卷(解析版) 題型:填空題

點P是△ABC中AB邊上的一點,過P作直線(不與AB重合)截△ABC,使截得的三角形與原三角形相似,滿足條件的直線最多有         

 

查看答案和解析>>

科目:初中數(shù)學 來源:第24章《相似形》好題集(11):24.2 相似三角形的判定(解析版) 題型:選擇題

點P是△ABC中AB邊上的一點,過點P作直線(不與直線AB重合)截△ABC,使截得的三角形與原三角形相似,滿足這樣條件的直線最多有( )
A.2條
B.3條
C.4條
D.5條

查看答案和解析>>

同步練習冊答案