作业宝在Rt△ABC中,∠C=90,AC=6,BC=8,且△ABC的三邊都與圓O相切,則圓O的半徑r=________.

2
分析:設(shè)⊙O半徑是r,連接OA、OB、OC、OD、OE、OF,根據(jù)勾股定理求出AB,根據(jù)三角形的面積公式得出S△ACB=S△OAC+S△OBC+S△OAB,代入求出即可.
解答:解:設(shè)⊙O半徑是r,
連接OA、OB、OC、OD、OE、OF,
∵⊙O為△ABC的內(nèi)切圓,切點(diǎn)是D、E、F,
∴OD⊥AB,OE⊥CB,OF⊥AC,OD=OE=OF=r,
∵AC=6,BC=8,由勾股定理得:AB=10,
根據(jù)三角形的面積公式得:S△ACB=S△OAC+S△OBC+S△OAB,
∴AC×BC=AC×r+BC×r+AB×r,即:6×8=6r+8r+10r,
∴r=2.
故⊙O半徑是2.
故答案為:2.
點(diǎn)評(píng):本題主要考查了切線(xiàn)的性質(zhì),三角形的內(nèi)切圓與內(nèi)心,三角形的面積等知識(shí)點(diǎn)的理解和掌握,能得出S△ACB=S△OAC+S△OBC+S△OAB是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長(zhǎng)為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫(huà)出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊(cè)答案