(2003•岳陽(yáng))如圖,點(diǎn)M(,0)為Rt△OED斜邊上的中點(diǎn),O為坐標(biāo)原點(diǎn),∠ODE=90°,過D作AB⊥DM交x軸的正半軸于A點(diǎn),交y軸的正半軸于B點(diǎn),且sin∠OAB=
(1)求:過E、D、O三點(diǎn)的二次函數(shù)解析式.
(2)問此拋物線頂點(diǎn)C是否在直線AB上,請(qǐng)予以證明;若頂點(diǎn)不在AB上,請(qǐng)說明理由.
(3)試在y軸上作出點(diǎn)P,使PC+PE為最小,并求出P點(diǎn)的坐標(biāo)(不寫作法和證明)

【答案】分析:(1)作DH⊥x軸于H,根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”和sin∠OAB=,求出D點(diǎn)坐標(biāo)和E點(diǎn)坐標(biāo),又知拋物線過點(diǎn)O,可設(shè)出二次函數(shù)一般式解答;
(2)求出拋物線頂點(diǎn)C的坐標(biāo)和直線解析式,將頂點(diǎn)C代入直線解析式看是否成立;
(3)作出E點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)E′,連接CE'與y軸交點(diǎn)即為點(diǎn)P,根據(jù)兩點(diǎn)之間線段最短,存在點(diǎn)P使PC+PE’最小,根據(jù)軸對(duì)稱的性質(zhì)PC+PE最小.
解答:解:作DH⊥x軸于H.
(1)∵點(diǎn)M(,0)為Rt△OED斜邊上的中點(diǎn),根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”得OM=ME=DM=,
∴OE=×2=3,
得E(3,0).
∵AB⊥DM,sin∠OAB=,
∴在Rt△ADM中,AM===
根據(jù)勾股定理,AD=2,于是在Rt△DHA中,HD=2×sin∠OAB=2×=,
根據(jù)勾股定理,AH==,OH=4-=
于是D點(diǎn)坐標(biāo)為(,).
∵拋物線過E(3,0)、D(,)、O(0,0)三點(diǎn),
∴設(shè)解析式為y=ax2+bx.
將各點(diǎn)代入解析式得:
解得a=-,b=,
解析式為y=-x2+x.

(2)∵DA=2,DM=,
∴根據(jù)勾股定理得,AM==,MO=
∴AO=+==4,
∴得A(4,0).因?yàn)橹本過A(4,0)、D(,)兩點(diǎn),
設(shè)解析式為y=kx+b,
將A(4,0)、D(,)代入得
解得,
直線解析式為y=-x+3.
由(1)知拋物線解析式為y=-x2+x,
頂點(diǎn)坐標(biāo)為x=-=,y==,
即C(),
代入直線AB的解析式得,-×()+3=,故頂點(diǎn)在AB上;

(3)作出E點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)E′,
則E‘點(diǎn)坐標(biāo)為(-3,0),直線CE′的解析式為y=kx+b,
將C()、E‘(-3,0)代入解析式
得,,
解得,
解析式為y=x+,
當(dāng)x=0時(shí),y=,
即P點(diǎn)坐標(biāo)為(0,).
點(diǎn)評(píng):此題將直角三角形的性質(zhì)和直線、拋物線相結(jié)合,巧妙利用了坐標(biāo)和線段長(zhǎng)度之間的關(guān)系,求出所需坐標(biāo),利用待定系數(shù)法求出函數(shù)解析式,利用解析式,其它問題便可迎刃而解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年湖南省岳陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•岳陽(yáng))如圖,點(diǎn)M(,0)為Rt△OED斜邊上的中點(diǎn),O為坐標(biāo)原點(diǎn),∠ODE=90°,過D作AB⊥DM交x軸的正半軸于A點(diǎn),交y軸的正半軸于B點(diǎn),且sin∠OAB=
(1)求:過E、D、O三點(diǎn)的二次函數(shù)解析式.
(2)問此拋物線頂點(diǎn)C是否在直線AB上,請(qǐng)予以證明;若頂點(diǎn)不在AB上,請(qǐng)說明理由.
(3)試在y軸上作出點(diǎn)P,使PC+PE為最小,并求出P點(diǎn)的坐標(biāo)(不寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圓》(10)(解析版) 題型:解答題

(2003•岳陽(yáng))如圖:⊙O為△ABC的外接圓,∠C=60°,過C作⊙O的切線,交AB的延長(zhǎng)線于P,∠APC的平分線和AC、BC分別相交于D、E.
(1)證明:△CDE是等邊三角形;
(2)證明:PD•DE=PE•AD;
(3)若PC=7,S△PCE=,求作以PE、DE的長(zhǎng)為根的一元二次方程;
(4)試判斷E點(diǎn)是否能成為PD的中點(diǎn)?若能,請(qǐng)說明必需滿足的條件,同時(shí)給出證明;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國(guó)中考數(shù)學(xué)試題匯編《相交線與平行線》(01)(解析版) 題型:填空題

(2003•岳陽(yáng))如圖,已知直線a∥b,并且a、b被直線c所截.若∠1=70°,則∠2=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:解答題

(2003•岳陽(yáng))如圖,在正方形ABCD中,E是AB的中點(diǎn),連接CE,過B作BF⊥CE交AC于F.求證:CF=2FA.

查看答案和解析>>

同步練習(xí)冊(cè)答案