如圖,在菱形ABCD中,AB=BD.點E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點G,連接CG與BD相交于點H.下列結論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF.
其中正確的結論(  )

 A.①②      B.①③      C.②③     D.①②③
D
①∵ABCD為菱形,∴AB=AD.
∵AB=BD,∴△ABD為等邊三角形.∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,∴△AED≌△DFB;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,
∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.
過點C作CM⊥GB于M,CN⊥GD于N.則△CBM≌△CDN,(HL)∴S四邊形BCDG=S四邊形CMGN
S四邊形CMGN=2SCMG,∵∠CGM=60°,∴GM=CG,CM=CG,
∴S四邊形CMGN=2SCMG=2××CG×CG=CG2

③過點F作FP∥AE于P點.∵AF=2FD,∴FP:AE=DF:DA=1:3,則 FP:BE=1:6=FG:BG,
即 BG=6GF.故選D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN­—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當∠AMN=60°時,結論AM=MN是否還成立?請說明理由.

(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當∠AMN=        °時,結論AM=MN仍然成立.
(直接寫出答案,不需要證明)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形ABCD沿EF對折后使兩部分重合,若∠1=50°,則∠AFF=    (    )
A.1100B.1150C.1200D.130。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD中,ADBCBAADDC,點ECB延長線上,BEAD,連接AC、AE.(1)求證:AEAC(2)若ABAC FBC的中點,試判斷四邊形AFCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖:△ABC中,AD是邊BC上的中線,過點A作AE∥BC,過點D作DE∥AB與AC、AE分別交于點O、E,連接EC.

小題1:求證:AD=EC;(4分)
小題2:當∠BAC=90º時,求證:四邊形ADCE是菱形;(3分)
小題3:在(2)的條件下,若AB=AO,且OD=,求菱形ADCE的周長.(5分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平行四邊形ABCD中,∠A=65°,則∠D的度數(shù)為( )
A.105°B.115°C.125°D.65°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,將正方形紙片折疊,使點落在邊上一點(不與點,重合),壓平后得到折痕

小題1:當時,求的值.(方法指導:為了求得的值,可先求、的長,不妨設=2)
小題2:在圖1中,若的值等于        ;若的值等于        ;若為整數(shù)),則的值等于        .(用含的式子表示)
小題3:如圖2,將矩形紙片折疊,使點落在邊上一點(不與點重合),壓平后得到折痕的值等于        .(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

四邊形ABCD中,對角線A
A.BD相交于點O仍給出下列四組條件:
①∠ABC =∠ADC,AD//BC;②AB="CD,AD=BC" ③AO=CO,BO=DO,④AB//CD,AD=BC其中一定能判定這個四邊形是平行四邊形的條件有.( )
B.1組C.2組 c。3組D.4組

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,矩形ABCD沿著直線BD折疊,使點C落在處,AD于點E,AD = 8,AB = 4,則DE的長為        

查看答案和解析>>

同步練習冊答案