7、某工廠要招聘甲、乙兩種工種的工人150人,甲、乙兩種工種的工人的月工資分別為600元和1000元.
(1)設(shè)招聘甲種工種工人x人,工廠付給甲、乙兩種工種的工人工資共y元,寫出y(元)與x(人)的函數(shù)關(guān)系式;
(2)現(xiàn)要求招聘的乙種工種的人數(shù)不少于甲種工種人數(shù)的2倍,問甲、乙兩種工種各招聘多少人時,可使得每月所付的工資最少?
分析:(1)根據(jù)題意甲種工種工人x人,則乙種工人為(150-x)人,然后根據(jù)已知條件即可確定y與x成一次函數(shù)關(guān)系;
(2)根據(jù)題意可列出一不等式150-x≥2x,解得x≤50,再利用一次函數(shù)的性質(zhì)可解.
解答:解:
(1)依題意得
y=600x+1000(150-x)
=-400x+150000;

(2)依題意得,150-x≥2x
∴x≤50
因為-400<0,由一次函數(shù)的性質(zhì)知,當(dāng)x=50時,y有最小值
所以150-50=100
答:甲工種招聘50人,乙工種招聘100人時可使得每月所付的工資最少.
點評:此題首先正確理解題意,然后根據(jù)已知條件列出函數(shù)關(guān)系式.在利用一次函數(shù)求最值時,注意應(yīng)用一次函數(shù)的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(8分)某工廠要招聘甲、乙兩種工種的工人150人,甲、乙兩種工種的工人的月工資分別為600元和1000元.

(1)設(shè)招聘甲種工種工人x人,工廠付給甲、乙兩種工種的工人工資共y元,寫出y(元)與x(人)的函數(shù)關(guān)系式

(2)現(xiàn)要求招聘的乙種工種的人數(shù)不少于甲種工種人數(shù)的2倍,問甲、乙兩種工種

各招聘多少人時,可使得每月所付的工資最少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(8分)某工廠要招聘甲、乙兩種工種的工人150人,甲、乙兩種工種的工人的月工資分別為600元和1000元.
(1)設(shè)招聘甲種工種工人x人,工廠付給甲、乙兩種工種的工人工資共y元,寫出y(元)與x(人)的函數(shù)關(guān)系式
(2)現(xiàn)要求招聘的乙種工種的人數(shù)不少于甲種工種人數(shù)的2倍,問甲、乙兩種工種
各招聘多少人時,可使得每月所付的工資最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆湖北省咸寧市昌金中學(xué)八年級下學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(8分)某工廠要招聘甲、乙兩種工種的工人150人,甲、乙兩種工種的工人的月工資分別為600元和1000元.
(1)設(shè)招聘甲種工種工人x人,工廠付給甲、乙兩種工種的工人工資共y元,寫出y(元)與x(人)的函數(shù)關(guān)系式
(2)現(xiàn)要求招聘的乙種工種的人數(shù)不少于甲種工種人數(shù)的2倍,問甲、乙兩種工種
各招聘多少人時,可使得每月所付的工資最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省咸寧市八年級下學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(8分)某工廠要招聘甲、乙兩種工種的工人150人,甲、乙兩種工種的工人的月工資分別為600元和1000元.

(1)設(shè)招聘甲種工種工人x人,工廠付給甲、乙兩種工種的工人工資共y元,寫出y(元)與x(人)的函數(shù)關(guān)系式

(2)現(xiàn)要求招聘的乙種工種的人數(shù)不少于甲種工種人數(shù)的2倍,問甲、乙兩種工種

各招聘多少人時,可使得每月所付的工資最少?

 

查看答案和解析>>

同步練習(xí)冊答案