年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:中學(xué)教材全解 七年級(jí)數(shù)學(xué)上。ū睅煷蟀妫 北師大版 題型:022
(考點(diǎn)題)等于________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【考點(diǎn)】切線的性質(zhì);圓周角定理.
【專題】計(jì)算題.
【分析】連接OA,OB,在優(yōu)弧AB上任取一點(diǎn)D(不與A、B重合),連接BD,AD,如圖所示,由PA與PB都為圓O的切線,利用切線的性質(zhì)得到OA與AP垂直,OB與BP垂直,在四邊形APOB中,根據(jù)四邊形的內(nèi)角和求出∠AOB的度數(shù),再利用同弧所對(duì)的圓周角等于所對(duì)圓心角的一半求出∠ADB的度數(shù),再根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)即可求出∠ACB的度數(shù).
【解答】連接OA,OB,在優(yōu)弧AB上任取一點(diǎn)D(不與A、B重合),
連接BD,AD,如圖所示:
∵PA、PB是⊙O的切線,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,又∠P=40°,
∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,
∵圓周角∠ADB與圓心角∠AOB都對(duì)弧AB,
∴∠ADB=∠AOB=70°,
又∵四邊形ACBD為圓內(nèi)接四邊形,
∴∠ADB+∠ACB=180°,
則∠ACB=110°.
故選B。
【點(diǎn)評(píng)】此題考查了切線的性質(zhì),圓周角定理,圓內(nèi)接四邊形的性質(zhì),以及四邊形的內(nèi)角和,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【答案】x≥1。
【考點(diǎn)】二次根式有意義的條件.
【專題】存在型.
【分析】先根據(jù)二次根式有意義的條件列出關(guān)于x的不等式,求出x的取值范圍即可.
【解答】∵在實(shí)數(shù)范圍內(nèi)有意義,
∴x-1≥0,
解得x≥1.
故答案為:x≥1.
【點(diǎn)評(píng)】本題考查的是二次根式有意義的條件,即被開(kāi)方數(shù)大于等于0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【答案】60°。
【考點(diǎn)】平行線的性質(zhì);三角形的外角性質(zhì).
【分析】利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠3的同位角的度數(shù),再根據(jù)兩直線平行,同位角相等即可求解.
【解答】如圖,∵∠1=130°,∠2=70°,
∴∠4=∠1-∠2=130°-70°=60°,
∵a∥b,
∴∠3=∠4=60°.
故答案為:60°.
【點(diǎn)評(píng)】本題考查了平行線的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),準(zhǔn)確識(shí)圖,理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
【考點(diǎn)】菱形的性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的判定與性質(zhì).
【分析】根據(jù)菱形的四條邊都相等,先判定△ABD是等邊三角形,再根據(jù)菱形的性質(zhì)可得∠BDF=∠C=60°,再求出DF=CE,然后利用“邊角邊”即可證明△BDF≌△DCE,從而判定①正確;根據(jù)全等三角形對(duì)應(yīng)角相等可得∠DBF=∠EDC,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可以求出∠DMF=∠BDC=60°,再根據(jù)平角等于180°即可求出∠BMD=120°,從而判定②正確;根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和以及平行線的性質(zhì)求出∠ABM=∠ADH,再利用“邊角邊”證明△ABM和△ADH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AH=AM,對(duì)應(yīng)角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,從而判定出△AMH是等邊三角形,判定出③正確;根據(jù)全等三角形的面積相等可得△AMH的面積等于四邊形ABMD的面積,然后判定出④錯(cuò)誤.
【解答】在菱形ABCD中,∵AB=BD,
∴AB=BD=AD,
∴△ABD是等邊三角形,
∴根據(jù)菱形的性質(zhì)可得∠BDF=∠C=60°,
∵BE=CF,
∴BC-BE=CD-CF,
即CE=DF,
在△BDF和△DCE中,CE=DF;∠BDF=∠C=60°;BD=CD,
∴△BDF≌△DCE(SAS),故①小題正確;
∴∠DBF=∠EDC,
∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,
∴∠BMD=180°-∠DMF=180°-60°=120°,故②小題正確;
∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,
∴∠DEB=∠ABM,
又∵AD∥BC,
∴∠ADH=∠DEB,
∴∠ADH=∠ABM,
在△ABM和△ADH中,AB=AD;∠ADH=∠ABM;DH=BM,
∴△ABM≌△ADH(SAS),
∴AH=AM,∠BAM=∠DAH,
∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,
∴△AMH是等邊三角形,故③小題正確;
∵△ABM≌△ADH,
∴△AMH的面積等于四邊形ABMD的面積,
又∵△AMH的面積=AM·AM=AM2,
∴S四邊形ABMD=AM2,S四邊形ABCD≠S四邊形ABMD,故④小題錯(cuò)誤,
綜上所述,正確的是①②③共3個(gè).
故選C.
【點(diǎn)評(píng)】本題考查了菱形的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),題目較為復(fù)雜,特別是圖形的識(shí)別有難度,從圖形中準(zhǔn)確確定出全等三角形并找出全等的條件是解題的關(guān)鍵.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com