【題目】酒泉市教育局計(jì)劃對(duì)全市八年級(jí)學(xué)生學(xué)習(xí)情況進(jìn)行調(diào)查,隨機(jī)從全市抽取城市和農(nóng)村兩組學(xué)生的期中數(shù)學(xué)成績,每組10人進(jìn)行對(duì)比分析.繪制統(tǒng)計(jì)圖如下.根據(jù)圖中信息,完成下列問題.

1)完成下表;

平均數(shù)

中位數(shù)

眾數(shù)

方差

城市

農(nóng)村

2)依據(jù)上表的信息談?wù)勀愕目捶ǎ?/span>

【答案】(1)詳見解析;(2)從平均數(shù)、中位數(shù)來看,城市和農(nóng)村學(xué)生的期中數(shù)學(xué)成績的平均水平差異不大,但從方差來看,城市學(xué)生的成績波動(dòng)比農(nóng)村學(xué)生的成績波動(dòng)大,即更加分散.(答案不唯一,有理有據(jù)即可)

【解析】

1)先根據(jù)兩個(gè)統(tǒng)計(jì)圖分別得出城市、農(nóng)村10人的數(shù)據(jù),再分別根據(jù)平均數(shù)、中位數(shù)、眾數(shù)、方差的定義和計(jì)算公式逐個(gè)計(jì)算即可;

2)根據(jù)城市、農(nóng)村10人數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差進(jìn)行點(diǎn)評(píng)即可.

1)由統(tǒng)計(jì)圖可得:城市10人的期中數(shù)學(xué)成績?yōu)?/span>;農(nóng)村10人的期中數(shù)學(xué)成績?yōu)?/span>

則平均數(shù):城市;農(nóng)村

城市的成績先按低到高(或高到低)排序?yàn)?/span>

中位數(shù):城市;農(nóng)村

眾數(shù):城市;農(nóng)村

方差:城市;農(nóng)村

因此,填表如下:

平均數(shù)

中位數(shù)

眾數(shù)

方差

城市

80

85

90

280

農(nóng)村

80

80

7080

160

2)從平均數(shù)、中位數(shù)來看,城市和農(nóng)村學(xué)生的期中數(shù)學(xué)成績的平均水平差異不大,但從方差來看,城市學(xué)生的成績波動(dòng)比農(nóng)村學(xué)生的成績波動(dòng)大,即更加分散.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展“我最喜愛的一項(xiàng)體育活動(dòng)”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.

請(qǐng)結(jié)合以上信息解答下列問題:

(1)m= ;

(2)請(qǐng)補(bǔ)全上面的條形統(tǒng)計(jì)圖;

(3)在圖2中,“乒乓球”所對(duì)應(yīng)扇形的圓心角的度數(shù)為 ;

(4)已知該校共有1200名學(xué)生,請(qǐng)你估計(jì)該校約有 名學(xué)生最喜愛足球活動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù) y=﹣x+4 的圖象與反比例 y=k 為常數(shù), k≠0)的圖象交于 A(1,a)、Bb,1)兩點(diǎn).

(1)求點(diǎn) A、B 的坐標(biāo)及反比例函數(shù)的表達(dá)式;

(2) x 軸上找一點(diǎn),使 PA+PB 的值最小,求滿足條件的點(diǎn) P 的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+2x軸、y軸分別交于A、B兩點(diǎn),OA:OB=.以線段AB為邊在第二象限內(nèi)作等腰Rt△ABC,∠BAC=90°.

(1)求點(diǎn)A的坐標(biāo)和k的值;

(2)求點(diǎn)C坐標(biāo);

(3)直線y=x在第一象限內(nèi)的圖象上是否存在點(diǎn)P,使得△ABP的面積與△ABC的面積相等?如果存在,求出點(diǎn)P坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知是等腰底邊上的高,且上有一點(diǎn),滿足,則的值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如圖1,若一個(gè)四邊形的兩條對(duì)角線互相垂直,則稱這個(gè)四邊形為垂美四邊形.

1)概念理解:如圖2,在四邊形ABCD中,ABAD,CBCD,問四邊形ABCD是垂美四邊形嗎?請(qǐng)說明理由;

2)性質(zhì)探究:如圖1,試在垂美四邊形ABCD中探究AB2,CD2,AD2BC2之間的關(guān)系,并說明理由;

3)解決問題:如圖3,分別以RtABC的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結(jié)CE、BG、GE、CEBG于點(diǎn)N,交AB于點(diǎn)M.已知ACAB2,求GE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的發(fā)展,油電混合動(dòng)力汽車已經(jīng)開始普及,某種型號(hào)油電混合動(dòng)力汽車,從甲地到乙地燃油行駛純?nèi)加唾M(fèi)用80元,從甲地到乙地用電行駛純電費(fèi)用30元,已知每行駛1千米,純?nèi)加唾M(fèi)用比純用電費(fèi)用多0.5

1)求每行駛1千米純用電的費(fèi)用;

2)若要使從甲地到乙地油電混合行駛所需的油、電費(fèi)用合計(jì)不超過50元,則至多用純?nèi)加托旭偠嗌偾祝?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將圖1,將一張直角三角形紙片ABC折疊,使點(diǎn)A與點(diǎn)C重合,這時(shí)DE為折痕,CBE為等腰三角形;再繼續(xù)將紙片沿CBE的對(duì)稱軸EF折疊,這時(shí)得到了兩個(gè)完全重合的矩形(其中一個(gè)是原直角三角形的內(nèi)接矩形,另一個(gè)是拼合成的無縫隙、無重疊的矩形),我們稱這樣兩個(gè)矩形為“疊加矩形”.

(1)如圖2,正方形網(wǎng)格中的ABC能折疊成“疊加矩形”嗎?如果能,請(qǐng)?jiān)趫D2中畫出折痕;

(2)如圖3,在正方形網(wǎng)格中,以給定的BC為一邊,畫出一個(gè)斜三角形ABC,使其頂點(diǎn)A在格點(diǎn)上,且ABC折成的“疊加矩形”為正方形;

(3)如果一個(gè)三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是   ;

(4)如果一個(gè)四邊形一定能折成“疊加矩形”,那么它必須滿足的條件是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOB中,ABOB,且AB=OB=3,設(shè)直線截此三角形所得陰影部分的面積為S,則St之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案