【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖像經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于( )
A.60
B.80
C.30
D.40
【答案】D
【解析】解:過(guò)點(diǎn)A作AM⊥x軸于點(diǎn)M,如圖所示.
設(shè)OA=a,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB= ,
∴AM=OAsin∠AOB= a,OM= = a,
∴點(diǎn)A的坐標(biāo)為( a, a).
∵點(diǎn)A在反比例函數(shù)y= 的圖像上,
∴ a× a= =48,
解得:a=10,或a=﹣10(舍去).
∴AM=8,OM=6,OB=OA=10.
∵四邊形OACB是菱形,點(diǎn)F在邊BC上,
∴S△AOF= S菱形OBCA= OBAM=40.
故選D.
【考點(diǎn)精析】關(guān)于本題考查的菱形的性質(zhì),需要了解菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一張直角三角形紙片的兩直角邊上各取一點(diǎn),分別沿斜邊中點(diǎn)與這兩點(diǎn)的連線剪去兩個(gè)三角形,剩下的部分是如圖所示的四邊形,AB∥CD,CD⊥BC于C,且AB、BC、CD邊長(zhǎng)分別為2,4,3,則原直角三角形紙片的斜邊長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新學(xué)期開學(xué),兩摞規(guī)格相同準(zhǔn)備發(fā)放的數(shù)學(xué)課本整齊地疊放在講臺(tái)上,請(qǐng)根據(jù)圖中所給的數(shù)據(jù)信息,解答下列問(wèn)題:
(1)一本數(shù)學(xué)課本的高度是多少厘米?
(2)講臺(tái)的高度是多少厘米?
(3)請(qǐng)寫出整齊疊放在桌面上的x本數(shù)學(xué)課本距離地面的高度的代數(shù)式(用含有x的代數(shù)式表示);
(4)若桌面上有56本同樣的數(shù)學(xué)課本,整齊疊放成一摞,從中取走18本后,求余下的數(shù)學(xué)課本距離地面的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了節(jié)約用水,對(duì)自來(lái)水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過(guò)10噸的部分,按2元/噸收費(fèi);超過(guò)10噸的部分按2.5元/噸收費(fèi).
(1)若黃老師家5月份用水16噸,問(wèn)應(yīng)交水費(fèi)多少元?
(2)若黃老師家6月份交水費(fèi)30元,問(wèn)黃老師家5月份用水多少噸?
(3)若黃老師家7月用水a噸,問(wèn)應(yīng)交水費(fèi)多少元?(用a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】任何實(shí)數(shù)a,可用[a]表示不超過(guò)a的最大整數(shù),如[4]=4,[]=1.現(xiàn)對(duì)72進(jìn)行如下操作:72 []=8 []=2 []=1,這樣對(duì)72進(jìn)行3次操作后變?yōu)?,類似地,①對(duì)81進(jìn)行________次操作后變?yōu)?;②進(jìn)行3次操作后變?yōu)?的所有正整數(shù)中,最大的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于_______.
【答案】10或6
【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,
如圖1所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD==8,CD==2,
此時(shí)BC=BD+CD=8+2=10;
如圖2所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD==8,CD==2,
此時(shí)BC=BD-CD=8-2=6,
則BC的長(zhǎng)為6或10.
【題型】填空題
【結(jié)束】
12
【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過(guò)P1(x1,y1)、P2(x2,y2)兩點(diǎn),若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開機(jī)后,飲水機(jī)自動(dòng)開始加熱[此過(guò)程中水溫y(℃)與開機(jī)時(shí)間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時(shí)自動(dòng)停止加熱,隨后水溫開始下降[此過(guò)程中水溫y(℃)與開機(jī)時(shí)間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時(shí),飲水機(jī)又自動(dòng)開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)當(dāng)0≤x≤8時(shí),求水溫y(℃)與開機(jī)時(shí)間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明在通電開機(jī)后即外出散步,請(qǐng)你預(yù)測(cè)小明散步45分鐘回到家時(shí),飲水機(jī)內(nèi)的溫度約為多少℃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),F(xiàn)在AD邊上,M,N分別是CD,BC邊上的動(dòng)點(diǎn),若AB=AF=2,AD=3,則四邊形EFMN周長(zhǎng)的最小值是( )
A.2+
B.2 +2
C.5+
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)一元一次不等式與一次函數(shù)中,小明在同一個(gè)坐標(biāo)系中分別做出了一次函數(shù)l1和l2的圖像,l1與坐標(biāo)軸的交點(diǎn)分別為點(diǎn)A、點(diǎn)B,l1與l2的交點(diǎn)為點(diǎn)C,但被同桌小英不小心用墨水給部分污染了,我們一起來(lái)探討
(1)寫出點(diǎn)A、點(diǎn)C的坐標(biāo):A(①,0);C(②,4);
(2)求△BOC的面積:S△BOC=③
(3)直接寫出不等式2x+5<·x+·的解集并回答下面問(wèn)題
在解決問(wèn)題(3)時(shí),小明和小英各抒己見.小明:“l(fā)2的表達(dá)式中已經(jīng)看不清楚了,并且只知道l2上一個(gè)點(diǎn)C的坐標(biāo),求不出該直線的表達(dá)式,所以無(wú)法求出該不等式的解集”小英說(shuō):“不用求出l2的表達(dá)式就可以得出該不等式的解集.”你同意誰(shuí)的說(shuō)法?并說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com