如圖,BC為半圓O的直徑,A、D為半圓O上兩點(diǎn),AB=
3
,BC=2,則∠D的度數(shù)為(  )
A.60°B.120°C.135°D.150°
連接AC,如圖,
∵BC為半圓O的直徑,
∴∠BAC=90°,
而AB=
3
,BC=2,則AC=
BC2-AB2
=
22-(
3
)
2
=1,因此∠B=30°.
又∵∠D+∠B=180°,
∴∠D=180°-30°=150°.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O中,弦AB=8,C為
AB
中點(diǎn),CD⊥AB于D,若CD=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,AB為⊙O的直徑,∠B=60°,∠C=70°,則∠AOD的度數(shù)是______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,P是BC邊上的一個(gè)動(dòng)點(diǎn),以AP為直徑的⊙O分別交AB、AC于點(diǎn)E和點(diǎn)F.
(1)若∠BAC=45°,EF=4,則AP的長(zhǎng)為多少?
(2)在(1)條件下,求陰影部分面積.
(3)試探究:當(dāng)點(diǎn)P在何處時(shí),EF最短?請(qǐng)直接寫(xiě)出你所發(fā)現(xiàn)的結(jié)論,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,⊙O是△ABC的外接圓,∠OCB=40°,則∠A的度數(shù)等于( 。
A.60°B.50°C.40°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在⊙O中,一條弦所對(duì)的圓心角是100°,則該弦所對(duì)的圓周角是______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,點(diǎn)A、B、C在⊙O上,若∠AOB的度數(shù)為80°,則∠ACB的度數(shù)是( 。
A.80°B.40°C.160°D.20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小明學(xué)習(xí)了垂徑定理,做了下面的探究,請(qǐng)根據(jù)題目要求幫小明完成探究.
(1)更換定理的題設(shè)和結(jié)論可以得到許多真命題.如圖1,在⊙0中,C是劣弧AB的中點(diǎn),直線CD⊥AB于點(diǎn)E,則AE=BE.請(qǐng)證明此結(jié)論;
(2)從圓上任意一點(diǎn)出發(fā)的兩條弦所組成的折線,成為該圓的一條折弦.如圖2,PA,PB組成⊙0的一條折弦.C是劣弧AB的中點(diǎn),直線CD⊥PA于點(diǎn)E,則AE=PE+PB.可以通過(guò)延長(zhǎng)DB、AP相交于點(diǎn)F,再連接AD證明結(jié)論成立.請(qǐng)寫(xiě)出證明過(guò)程;
(3)如圖3,PA.PB組成⊙0的一條折弦,若C是優(yōu)弧AB的中點(diǎn),直線CD⊥PA于點(diǎn)E,則AE,PE與PB之間存在怎樣的數(shù)量關(guān)系?寫(xiě)出結(jié)論,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O的直徑為10,在⊙O上位于直徑AB的異側(cè)有定點(diǎn)C和動(dòng)點(diǎn)P,已知BC:CA=4:3,點(diǎn)P在半圓弧AB上運(yùn)動(dòng)(不與A、B兩點(diǎn)重合),過(guò)點(diǎn)C作CP的垂線CD交PB的延長(zhǎng)線于D點(diǎn).
(1)求證:AC•CD=PC•BC;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到AB弧中點(diǎn)時(shí),求CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案