(1997•山西)解方程組:
x-y=4
x
+
y
=2
分析:由①得出(
x
+
y
)(
x
-
y
)=4,把②代入得出
x
-
y
=2④,②+④求出x=4,②-④求出y=0,再進(jìn)行檢驗(yàn)即可.
解答:解:
x-y=4①
x
+
y
=2②
,
∵由①得:(
x
+
y
)(
x
-
y
)=4,③
把②代入③得:
x
-
y
=2④,
②+④得:2
x
=4,
x
=2
x=4,
②-④得:2
y
=0,
y=0,
經(jīng)檢驗(yàn)
x=4
y=0
是原方程組的解,
即原方程組的解為
x=4
y=0
點(diǎn)評(píng):本題考查了解無(wú)理方程組和平方差公式的應(yīng)用,關(guān)鍵是求出
x
-
y
的值,注意解無(wú)理方程組一定要進(jìn)行檢驗(yàn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•山西)用換元法解分式方程
3x
x2-1
+
x2-1
3x
=3時(shí),設(shè)
3x
x2-1
=y
,則原方程可變形為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案