填注理由:
如圖,已知∠ADE=∠B,F(xiàn)G⊥AB,∠EDC=∠GFB,求證:CD⊥AB
證明:因為∠ADE=∠B(已知)
所以DE∥BC(________)
所以∠EDC=∠DCB(________)
因為∠EDC=∠GFB(已知)
所以∠DCB=∠GFB(________)
所以FG∥CD(________)
所以∠BGF=∠BDC(________)
因為FG⊥AB(已知)
所以∠BGF=90°(________)
所以∠BDC=90°(________)
即CD⊥AB(________)

同位角相等,兩直線平行    兩直線平行,內(nèi)錯角相等    等量代換    同位角相等,兩直線平行    兩直線平行,同位角相等    垂直的定義    等量代換    垂直的定義
分析:根據(jù)圖形,利用平行線的判定和性質(zhì),進行填寫.
解答:根據(jù)平行線的判定和性質(zhì)填空,
證明:因為∠ADE=∠B(已知)
所以DE∥BC(同位角相等兩直線平行)
所以∠EDC=∠DCB(兩直線平行,內(nèi)錯角相等)
因為∠EDC=∠GFB(已知)
所以∠DCB=∠GFB(等量代換)
所以FG∥CD(同位角相等兩直線平行)
所以∠BGF=∠BDC(兩直線平行,同位角相等)
因為FG⊥AB(已知)
所以∠BGF=90°(垂直定義)
所以∠BDC=90°(等量代換)
即CD⊥AB(垂直定義).
點評:本題利用了等量代換,垂直定義,兩直線平行同位角相等,同位角相等兩直線平行等知識.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、填注理由:
如圖,已知∠ADE=∠B,F(xiàn)G⊥AB,∠EDC=∠GFB,求證:CD⊥AB
證明:因為∠ADE=∠B(已知)
所以DE∥BC(
同位角相等,兩直線平行

所以∠EDC=∠DCB(
兩直線平行,內(nèi)錯角相等

因為∠EDC=∠GFB(已知)
所以∠DCB=∠GFB(
等量代換

所以FG∥CD(
同位角相等,兩直線平行

所以∠BGF=∠BDC(
兩直線平行,同位角相等

因為FG⊥AB(已知)
所以∠BGF=90°(
垂直的定義

所以∠BDC=90°(
等量代換

即CD⊥AB(
垂直的定義

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

填注理由:
(1)已知如圖1,∠1=∠2,∠3=∠4,求證:EG∥FH.
證明:∵∠1=∠2(已知)∠AEF=∠1
對頂角相等
對頂角相等

∴∠AEF=∠2
等量代換
等量代換

∴AB∥CD
同位角相等兩直線平行
同位角相等兩直線平行

∴∠BEF=∠CFE
兩直線平行,內(nèi)錯角相等
兩直線平行,內(nèi)錯角相等

∵∠3=∠4(已知)
∴∠BEF-∠4=∠CFE-∠3
等式的性質(zhì)
等式的性質(zhì)

即∠GEF=∠HFE
∴EG∥FH
內(nèi)錯角相等兩直線平行
內(nèi)錯角相等兩直線平行

(2)如圖2:已知,OC⊥OD,OA⊥OB,求證:∠1=∠3
證明:∵OC⊥OD(已知)
∴∠1+∠2=90°
垂直定義
垂直定義

同理∠3+∠2=90°
∴∠1=∠3
等角的余角相等
等角的余角相等

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

填注理由:
如圖,已知∠ADE=∠B,F(xiàn)G⊥AB,∠EDC=∠GFB,求證:CD⊥AB
精英家教網(wǎng)

證明:因為∠ADE=∠B(已知)
所以DEBC(______)
所以∠EDC=∠DCB(______)
因為∠EDC=∠GFB(已知)
所以∠DCB=∠GFB(______)
所以FGCD(______)
所以∠BGF=∠BDC(______)
因為FG⊥AB(已知)
所以∠BGF=90°(______)
所以∠BDC=90°(______)
即CD⊥AB(______)

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:解答題

閱讀理解并在括號內(nèi)填注理由:如圖,已知AB∥CD,∠1=∠2,試說明EP∥FQ。
證明:∵AB∥CD, 
 ∴∠MEB=∠MFD(           )  
又∵∠1=∠2,  
∴∠MEB-∠1=∠MFD-∠2,
即∠MEP=∠______  
∴EP∥_____。(               )

查看答案和解析>>

同步練習冊答案