(2003•泰州)已知圓錐的底面直徑為8cm,母線長為9cm,則它的表面積是    cm2(結(jié)果保留π).
【答案】分析:根據(jù)圓錐表面積=側(cè)面積+底面積=底面周長×母線長+底面積計算.
解答:解:圓錐的表面積=4π×9+16π=52πcm2
點評:解決本題的關鍵記準圓錐的側(cè)面面積和底面面積分式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2003•泰州)已知:如圖,拋物線y=x2-(m+2)x+3(m-1)與x軸的兩個交點M、N在原點的兩側(cè),點N在點M的右邊,直線y1=-2x+m+6經(jīng)過點N,交y軸于點F.
(1)求這條拋物線和直線的解析式.
(2)又直線y2=kx(k>0)與拋物線交于兩個不同的點A、B,與直線y1交于點P,分別過點A、B、P作x軸的垂線,垂足分別是C、D、H.
①試用含有k的代數(shù)式表示
②求證:
(3)在(2)的條件下,延長線段BD交直線y1于點E,當直線y2繞點O旋轉(zhuǎn)時,問是否存在滿足條件的k值,使△PBE為等腰三角形?若存在,求出直線y2的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年江蘇省泰州市中考數(shù)學試卷(解析版) 題型:解答題

(2003•泰州)已知:如圖,拋物線y=x2-(m+2)x+3(m-1)與x軸的兩個交點M、N在原點的兩側(cè),點N在點M的右邊,直線y1=-2x+m+6經(jīng)過點N,交y軸于點F.
(1)求這條拋物線和直線的解析式.
(2)又直線y2=kx(k>0)與拋物線交于兩個不同的點A、B,與直線y1交于點P,分別過點A、B、P作x軸的垂線,垂足分別是C、D、H.
①試用含有k的代數(shù)式表示
②求證:
(3)在(2)的條件下,延長線段BD交直線y1于點E,當直線y2繞點O旋轉(zhuǎn)時,問是否存在滿足條件的k值,使△PBE為等腰三角形?若存在,求出直線y2的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2003•泰州)已知:如圖,⊙O與⊙O1內(nèi)切于點A,AO是⊙O1的直徑,⊙O的弦AC交⊙O1于點B,弦DF經(jīng)過點B且垂直于OC,垂足為點E.
(1)求證:DF與⊙O1相切;
(2)求證:2AB2=AD•AF;
(3)若AB=,cos∠DBA=,求AF和AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2003•泰州)已知:如圖,⊙O與⊙O1內(nèi)切于點A,AO是⊙O1的直徑,⊙O的弦AC交⊙O1于點B,弦DF經(jīng)過點B且垂直于OC,垂足為點E.
(1)求證:DF與⊙O1相切;
(2)求證:2AB2=AD•AF;
(3)若AB=,cos∠DBA=,求AF和AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圓》(11)(解析版) 題型:解答題

(2003•泰州)已知:如圖,⊙O與⊙O1內(nèi)切于點A,AO是⊙O1的直徑,⊙O的弦AC交⊙O1于點B,弦DF經(jīng)過點B且垂直于OC,垂足為點E.
(1)求證:DF與⊙O1相切;
(2)求證:2AB2=AD•AF;
(3)若AB=,cos∠DBA=,求AF和AD的長.

查看答案和解析>>

同步練習冊答案