【題目】問題:將菱形的面積五等分.小紅發(fā)現(xiàn)只要將菱形周長五等分,再將各分點(diǎn)與菱形的對(duì)角線交點(diǎn)連接即可解決問題.如圖,點(diǎn)O是菱形ABCD的對(duì)角線交點(diǎn),AB=5,下面是小紅將菱形ABCD面積五等分的操作與證明思路,請(qǐng)補(bǔ)充完整.
(1)在AB邊上取點(diǎn)E,使AE=4,連接OA,OE;
(2)在BC邊上取點(diǎn)F,使BF=______,連接OF;
(3)在CD邊上取點(diǎn)G,使CG=______,連接OG;
(4)在DA邊上取點(diǎn)H,使DH=______,連接OH.由于AE=______+______=______+______=______+______=______.可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.
【答案】(1)見解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA
【解析】
利用菱形四條邊相等,分別在四邊上進(jìn)行截取和連接,得出AE=EB+BF=FC+CG+GD+DH
=HA,進(jìn)一步求得S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.即可.
(1)在AB邊上取點(diǎn)E,使AE=4,連接OA,OE;
(2)在BC邊上取點(diǎn)F,使BF=3,連接OF;
(3)在CD邊上取點(diǎn)G,使CG=2,連接OG;
(4)在DA邊上取點(diǎn)H,使DH=1,連接OH.
由于AE=EB+BF=FC+CG=GD+DH=HA.
可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.
故答案為:3,2,1;EB、BF;FC、CG;GD、DH;HA.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P點(diǎn)是某海域內(nèi)的一座燈塔的位置,船A停泊在燈塔P的南偏東53°方向的50海里處,船B位于船A的正西方向且與燈塔P相距20海里.(本題參考數(shù)據(jù)sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)
(1)試問船B在燈塔P的什么方向?
(2)求兩船相距多少海里?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線AB是頂點(diǎn)為B,與y軸交于點(diǎn)A的拋物線 的一部分,曲線BC是雙曲線的一部分,由點(diǎn)C開始不斷重復(fù)“A-B-C”的過程,形成一組波浪線.點(diǎn)P(2017,m)與Q(2020,n)均在該波浪線上, =_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與雙曲線的一個(gè)交點(diǎn)是.
(1)求和的值;
(2)設(shè)點(diǎn)是雙曲線上一點(diǎn),直線與軸交于點(diǎn).若,結(jié)合圖象,直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖線段OA和折線BCD分別表示兩車離甲地的距離y(單位:千米)與時(shí)間x(單位:小時(shí))之間的函數(shù)關(guān)系.則下列說法正確的是( )
A.兩車同時(shí)到達(dá)乙地
B.轎車在行駛過程中進(jìn)行了提速
C.貨車出發(fā)3小時(shí)后,轎車追上貨車
D.兩車在前80千米的速度相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓O的直徑AB=5cm,點(diǎn)M在AB上且AM=1cm,點(diǎn)P是半圓O上的動(dòng)點(diǎn),過點(diǎn)B作BQ⊥PM交PM(或PM的延長線)于點(diǎn)Q.設(shè)PM=xcm,BQ=ycm.(當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)B重合時(shí),y的值為0)小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小石的探究過程,請(qǐng)補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組值,如下表:
x/cm | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm | 0 | 3.7 | ______ | 3.8 | 3.3 | 2.5 | ______ |
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)BQ與直徑AB所夾的銳角為60°時(shí),PM的長度約為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l1:y=k1x+b過A(0,﹣3),B(5,2),直線l2:y=k2x+2.
(1)求直線l1的表達(dá)式;
(2)當(dāng)x≥4時(shí),不等式k1x+b>k2x+2恒成立,請(qǐng)寫出一個(gè)滿足題意的k2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作三角形一邊上的高”的尺規(guī)作圖過程.
已知:△ABC.
求作:△ABC的邊BC上的高AD.
作法:如圖2,
(1)分別以點(diǎn)B和點(diǎn)C為圓心,BA,CA為半徑作弧,兩弧相交于點(diǎn)E;
(2)作直線AE交BC邊于點(diǎn)D.所以線段AD就是所求作的高.
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com