精英家教網(wǎng)如圖,已知正方形ABCD內(nèi)一點P,且PA=1,PD=2,PC=3,將△DCP繞點D順時針旋轉90°,則∠APD為
 
度.
分析:連接PP′,根據(jù)題意可得PD=P′D,∠P′PD=45°,又有AP′=PC=3,AP=1,PP′=2
2
;結合勾股定理可得∠P′PA=90°,進而可得∠APD的大。
解答:精英家教網(wǎng)解:連接PP′,
∵PA=1,PD=2,PC=3,將△DCP繞點D順時針旋轉90°,
∴PD=P′D,∠P′PD=45°,
∵AP′=PC=3,AP=1,PP′=2
2
,
∴∠P′PA=90°,
∴∠APD=90°+45°=135°.
故答案為135.
點評:本題考查旋轉的性質(zhì),旋轉變化前后,對應點到旋轉中心的距離相等以及每一對對應點與旋轉中心連線所構成的旋轉角相等.要注意旋轉的三要素:①定點-旋轉中心;②旋轉方向;③旋轉角度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點N.求證:BN⊥DM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點E是BC上一點,點F是CD延長線上一點,連接EF,若BE=DF,點P是EF的中點.
(1)求證:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正方形ABCD,點E在BC邊上,將△DCE繞某點G旋轉得到△CBF,點F恰好在AB邊上.
(1)請畫出旋轉中心G (保留畫圖痕跡),并連接GF,GE;
(2)若正方形的邊長為2a,當CE=
a
a
時,S△FGE=S△FBE;當CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 時,S△FGE=3S△FBE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正方形ABCD的對角線交于O,過O點作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正方形ABCD的對角線AC,BD相交于點O,E是AC上的一點,過點A作AG⊥BE,垂足為G,AG交BD于點F.
(1)試說明OE=OF;
(2)當AE=AB時,過點E作EH⊥BE交AD邊于H.若該正方形的邊長為1,求AH的長.

查看答案和解析>>

同步練習冊答案