(1)如圖1,以AC為斜邊的Rt△ABC和矩形HEFG擺放在直線l上(點B、C、E、F在直線l上),已知BC=EF=1,AB=HE=2.△ABC沿著直線l向右平移,設CE=x,△ABC與矩形HEFG重疊部分的面積為y(y≠0).當x=時,求出y的值;
(2)在(1)的條件下,如圖2,將Rt△ABC繞AC的中點旋轉180°后與Rt△ABC形成一個新的矩形ABCD,當點C在點E的左側,且x=2時,將矩形ABCD繞著點C順時針旋轉α角,將矩形HEFG繞著點E逆時針旋轉相同的角度.若旋轉到頂點D、H重合時,連接AG,求點D到AG的距離;
(3)在(2)的條件下,如圖3,當α=45°時,設AD與GH交于點M,CD與HE交于點N,求證:四邊形MHND為正方形.

【答案】分析:(1)根據題意畫出圖形,根據tan∠PCE=tan∠ACB得出.求出PE=,根據三角形面積公式求出即可;
(2)作DK⊥AG于點K,得出等邊三角形DCE,求出∠CDE=60°,求出∠ADG=120°,求出∠DAK=30°,求出DK即可;
(3)根據∠NCE=∠NEC=45°求出∠HND=∠CNE=90°,得出矩形HNDM,求出HN=DN,根據正方形判定推出即可.
解答:(1)解:如圖1,當x=時,設AC與HE交與點P.

由已知易得∠ABC=∠HEC=90°.
∴tan∠PCE=tan∠ACB.

∴PE=,


(2)解:如圖2,作DK⊥AG于點K,

∵CD=CE=DE=2,
∴△CDE是等邊三角形,
∴∠CDE=60°.
∴∠ADG=360°-2QUOTE90°-60°=120°,
∵AD=DG=1,
∴∠DAG=∠DGA=30°,
∴DK=DG=,
∴點D到AG的距離為

(3)解:如圖3,

∵α=45°,
∴∠NCE=∠NEC=45°,
∴∠CNE=90°,
∴∠DNH=90°,
∵∠D=∠H=90°,
∴四邊形MHND是矩形,
∵CN=NE,CD=HE,
∴DN=NH,
∴矩形MHND是正方形.
點評:本題考查了矩形性質和判定,正方形判定,含30度角的直角三角形,三角形內角和定理,三角形的面積,解直角三角形等知識點的應用,主要考查學生綜合運用性質進行推理和計算的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、如圖,在以點O為圓心的兩個同心圓中,AB經過圓心O,且與小圓相交于A,與大圓相交于點B,小圓的切線AC與大圓相交于D,OC平分∠ACB.
(1)證明直線BC是小圓的切線;
(2)試證明:AC+AD=BC;
(3)若AB=8cm,BC=10cm,求大圓與小圓形成的圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•昌平區(qū)二模)(1)如圖1,以AC為斜邊的Rt△ABC和矩形HEFG擺放在直線l上(點B、C、E、F在直線l上),已知BC=EF=1,AB=HE=2.△ABC沿著直線l向右平移,設CE=x,△ABC與矩形HEFG重疊部分的面積為y(y≠0).當x=
35
時,求出y的值;
(2)在(1)的條件下,如圖2,將Rt△ABC繞AC的中點旋轉180°后與Rt△ABC形成一個新的矩形ABCD,當點C在點E的左側,且x=2時,將矩形ABCD繞著點C順時針旋轉α角,將矩形HEFG繞著點E逆時針旋轉相同的角度.若旋轉到頂點D、H重合時,連接AG,求點D到AG的距離;
(3)在(2)的條件下,如圖3,當α=45°時,設AD與GH交于點M,CD與HE交于點N,求證:四邊形MHND為正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小華在某課外書上看到了這樣一道題:“如圖,分別以正方形ABCD的邊AB、AD為直徑畫半圓.若正方形的邊長為a,求陰影部分的面積.”從表面上看,圖中的陰影部分是復雜且比較分散的圖形,要直接計算它的面積還是有困難的,但小華仔細考慮過后,只是將正方形的對角線AC、BD連接起來,然后利用自己所學的“圖形的旋轉”知識很簡便地就將本題解決了,你知道他是怎樣做的嗎?

查看答案和解析>>

科目:初中數(shù)學 來源:學習周報 數(shù)學 滬科八年級版 2009-2010學年 第8期 總164期 滬科版 題型:044

如圖,

(1)以AC為邊的三角形有哪幾個?

(2)以點B為頂點的三角形有哪幾個?

(3)線段AF是哪幾個三角形的邊?

查看答案和解析>>

同步練習冊答案