【題目】某校的一個數(shù)學(xué)興趣小組在本校學(xué)生中開展主題為環(huán)廣西公路自行車世界巡回賽的專題調(diào)查活動,取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為非常了解”、“比較了解”、“基本了解”、“不太了解四個等級,分別記作A、B、C、D;并根據(jù)調(diào)查結(jié)果繪制成如圖所示不完整的統(tǒng)計圖,請結(jié)合圖中信息解答下列問題:

(1)請求出本次被調(diào)查的學(xué)生共多少人,并將條形統(tǒng)計圖補充完整.

(2)估計該校1500名學(xué)生中“C等級的學(xué)生有多少人?

(3)在“B等級的學(xué)生中,初三學(xué)生共有4人,其中13女,在這4個人中,隨機選出2人進行采訪,則所選兩位同學(xué)中有男同學(xué)的概率是多少?請用列表法或樹狀圖的方法求解.

【答案】(1)50人,圖見解析;(2)估計該校1500名學(xué)生中“C等級的學(xué)生有300人;(3)

【解析】分析:(1)、收下根據(jù)A的人數(shù)和百分比得出被調(diào)查的總?cè)藬?shù),然后得出D等級的人數(shù),將圖形進行補全;(2)、根據(jù)C等級在樣本中所占的比例估計出總?cè)藬?shù);(3)、根據(jù)題意列出表格,然后根據(jù)概率的計算法則求出概率.

詳解:(1)本次被調(diào)查的學(xué)生人數(shù)為15÷30%=50人,

D等級人數(shù)為50﹣(15+20+10)=5(人),

補全統(tǒng)計圖如下:

(2)1500×=300(人),

答:估計該校1500名學(xué)生中“C等級的學(xué)生有300人;

(3)列表如下:

第一次所選

第二次所選

男,女

男,女

男,女

女,男

女,女

女,女

女,男

女,女

女,女

女,男

女,女

女,女

由上表可知,從4為同學(xué)中選兩位同學(xué)的等可能結(jié)果共有12種,其中所選兩位同學(xué)中有男同學(xué)的結(jié)果共有6種. 所以所選兩位同學(xué)中有男同學(xué)的概率為=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【題目】有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.將這副直角三角板按如圖1所示位置擺放,點B與點F重合,直角邊BAFD在同一條直線上.現(xiàn)固定三角板ABC,將三角板DEF沿射線BA方向平行移動,當(dāng)點F運動到點A時停止運動.

(1)如圖2,當(dāng)三角板DEF運動到點D與點A重合時,設(shè)EFBC交于點M,則∠EMC=  度;

(2)如圖3,在三角板DEF運動過程中,當(dāng)EF經(jīng)過點C時,求FC的長;

(3)在三角板DEF運動過程中,設(shè)BF=x,兩塊三角板重疊部分的面積為y,求yx的函數(shù)解析式,并求出對應(yīng)的x取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊AB=20,面積為320,∠BAD<90°,⊙O與邊AB,AD都相切,若AO=10,則⊙O的半徑長為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)5x-3(20-2x)=7x-6(8-x);

(2) - =1.

(3) - =0.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知M是△ABC的邊AB的中點,DMC的延長線上一點,滿足∠ACM=BDM

(1)求證:AC=BD;

(2)若∠BMC=60°,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點在數(shù)軸上對應(yīng)的數(shù)為,點對應(yīng)的數(shù)為,關(guān)于的多項式6次多項式,且常數(shù)項為-6.

1)點的距離為______(直接寫出結(jié)果);

2)如圖1,點是數(shù)軸上一點,點的距離是的距離的3倍(即),求點在數(shù)軸上對應(yīng)的數(shù);

3)如圖2,點分別從點,同時出發(fā),分別以,的速度沿數(shù)軸負方向運動(,之間,之間),運動時間為,點,之間一點,且點的距離是點距離的一半(即),若運動過程中的距離(即)總為一個固定的值,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分c1與經(jīng)過點A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點C的坐標(biāo)為(0,﹣ ),點M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點.

(1)求A、B兩點的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;

(3)當(dāng)△BDM為直角三角形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館普通票價20張,暑假為了促銷,新推出兩種優(yōu)惠卡:

金卡售價600張,每次憑卡不再收費.

銀卡售價150張,每次憑卡另收10元.

暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù)設(shè)游泳x次時,所需總費用為y

分別寫出選擇銀卡、普通票消費時,yx之間的函數(shù)關(guān)系式;

在同一坐標(biāo)系中,若三種消費方式對應(yīng)的函數(shù)圖象如圖所示,請求出點AB、C的坐標(biāo);

請根據(jù)函數(shù)圖象,直接寫出選擇哪種消費方式更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】背景閱讀:我們在教材24.3已經(jīng)知道了直角三角形中銳角的三角函數(shù)的概念,類似地,我們在等腰三角形中建立邊角之間的關(guān)系,即等腰三角形中底邊與腰的比叫做頂角的正對,記作:sad.如圖1,在ABC中,AB=AC,頂角A的正對記作:sadA,這時sadA==

問題解決:

(1)若頂角A=60°,求sadA的值;

(2)若90°<A<180°,求∠A的正對sadA的取值范圍;

合作交流:

(3)如圖2,在RtABC中,∠ACB=90°,若sinA=,試求以AC為腰的等腰三角形中,頂角A的正對sadA的值.

查看答案和解析>>

同步練習(xí)冊答案