平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)AB∥CD.如圖a,由AB∥CD,有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD+∠D=∠B.
如圖b,以上結(jié)論是否成立?若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(2)在圖b中,將直線AB繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)一定角度交直線CD于點(diǎn)E,如圖c,則∠BPD﹑∠B﹑∠D﹑∠BED之間有何數(shù)量關(guān)系?(不需說(shuō)明理由);
(3)根據(jù)(2)的結(jié)論求圖d中∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
⑴不成立,∠BPD=∠B+∠D;⑵∠BPD=∠B+∠D+∠BED;⑶360°。
解析試題分析:(1)延長(zhǎng)BP交CD于E,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,求出∠PED=∠B,再利用三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和即可說(shuō)明不成立,應(yīng)為∠BPD=∠B+∠D;
(2)作射線QP,根據(jù)三角形的外角性質(zhì)可得;
(3)連接EG并延長(zhǎng),根據(jù)三角形的外角性質(zhì),把角轉(zhuǎn)化到四邊形中再求解.
(1)不成立.結(jié)論是∠BPD=∠B+∠D
如圖,延長(zhǎng)BP交CD于點(diǎn)E,
∵AB∥CD
∴∠B=∠BED
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)結(jié)論:∠BPD=∠BQD+∠B+∠D.
(3)如圖,連接EG并延長(zhǎng),
由圖象可知:∠AGB=∠A+∠B+∠E,
又∵∠AGB=∠CGF,
在四邊形CDFG中,∠CGF+∠C+∠D+∠F=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
考點(diǎn):本題考查的是平行線的性質(zhì),三角形外角的性質(zhì)
點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握三角形外角的性質(zhì):三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com