(本題20分) (湖南湘西,25,20分)如圖.拋物線與x軸相交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C.
(1)求點(diǎn)A、點(diǎn)B和點(diǎn)C的坐標(biāo).
(2)求直線AC的解析式.
(3)設(shè)點(diǎn)M是第二象限內(nèi)拋物線上的一點(diǎn),且=6,求點(diǎn)M的坐標(biāo).
(4)若點(diǎn)P在線段BA上以每秒1個(gè)單位長(zhǎng)度的速度從A運(yùn)動(dòng)(不與B,A重合),同時(shí),點(diǎn)Q在射線AC上以每秒2個(gè)單位長(zhǎng)度的速度從A向C運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,請(qǐng)求出△APQ的面積S與t的函數(shù)關(guān)系式,并求出當(dāng)t為何值時(shí), △APQ的面積最大,最大面積是多少?
(1)令,(x+3)(x-1)=0,
A(-3,0)  B.(1,0),C(0,3)
(2)設(shè)直線AC的解析式為y=kx+b
由題意,得  解之得,y=x+3.
(3)設(shè)M點(diǎn)的坐標(biāo)為(x,)
AB=4,因?yàn)镸在第二象限,所以>0,
所以=6
解之,得,
當(dāng)x=0時(shí),y=3(不合題意)
當(dāng)x=-2時(shí),y=3.所以M點(diǎn)的坐標(biāo)為(-2,3)
(4)由題意,得AB=4,PB=4-t,
∵AO=3,CO=3,
∴△ABC是等腰直角三角形,
AQ=2t,
所以Q點(diǎn)的縱坐標(biāo)為t,
S=(1<t<4)

當(dāng)t=2時(shí)△APQ最大,最大面積是解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

加試題(本小題滿分20分,其中(1)、(2)、(3)題各3分,(4)題11分)
(1)一個(gè)正數(shù)的平方根為3-a和2a+3,則這個(gè)正數(shù)是
81
81

(2)若x2+2x+y2-6y+10=0,則xy=
-1
-1

(3)已知a,b分別是6-
13
的整數(shù)部分和小數(shù)部分,則2a-b=
13
13

(4)閱讀下面的問(wèn)題,并解答問(wèn)題:
1)如圖1,等邊△ABC內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A,B,C的距離分別為3,4,5,求∠APB的度數(shù)是多少?(請(qǐng)?jiān)谙铝袡M線上填上合適的答案)
分析:由于PA,PB,PC不在同一個(gè)三角形中,為了解決本題我們可以將△ABP繞頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△ACP′處,此時(shí)可以利用旋轉(zhuǎn)的特征等知識(shí)得到:
  ①∠APB=∠AP′C=∠AP′P+∠PP′C;
  ②AP=AP′,且∠PAP′=
60
60
度,所以△APP′為
等邊
等邊
三角形,則∠AP′P=
60
60
度;
  ③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C為
直角
直角
三角形,則∠PP′C=
90
90
度,從而得到∠APB=
150
150
度.
 2)請(qǐng)你利用第1)題的解答方法,完成下面問(wèn)題:
如圖2,在△ABC中,∠CAB=90°,AB=AC,E、F為邊BC上的點(diǎn),且∠EAF=45°,試說(shuō)明:EF2=BE2+FC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題10分) (湖南湘西24,10分)如圖,已知矩形ABCD的兩條對(duì)角線相交于O,∠ACB=30°,AB=2.
(1)求AC的長(zhǎng).
(2)求∠AOB的度數(shù).
(3)以O(shè)B、OC為鄰邊作菱形OBEC,求菱形OBEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題6分) (湖南湘西,22,6分)如圖,已知反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(1,2).

(1)求k的值.
(2)過(guò)點(diǎn)A分別作x軸和y軸的垂線,垂足為B和C,求矩形ABOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題6分) (湖南湘西,20,6分)如圖,在△ABC中,AD⊥BC,垂足為D,∠B=60°,∠C=45°.
(1)求∠BAC的度數(shù)。
(2)若AC=2,求AD的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案