如圖,在△ABC中,AB=AC,∠A=36°,BD,CE是角平分線,則圖中的等腰三角形共有( 。
分析:根據(jù)三角形內(nèi)角和定理求出∠ABC=∠ACB=72°,根據(jù)角平分線求出∠ABD=∠DBC=∠ACE=∠ECB=36°,根據(jù)三角形內(nèi)角和定理求出∠BDC、∠BEC、∠EOB、∠DOC,根據(jù)等腰三角形的判定推出即可.
解答:解:∵AB=AC,∠A=36°,
∴∠ABC=∠ACB=
1
2
(180°-∠A)=72°,
∵BD,CE是角平分線,
∴∠ABD=∠DBC=
1
2
∠ABC=36°,∠ACE=∠ECB=36°,
∴∠A=∠ABD=∠ACE,∠DBC=∠ECB,
∴∠BDC=180°-∠ACB-∠DBC=180°-72°-36°=72°,
同理∠BEC=72°,
∴∠BDC=∠ACB,∠BEC=∠EBC,
∴∠EOB=180°-∠BEC-∠EBD=180°-72°-36°=72°,
同理∠DOC=72°,
∴∠BEO=∠BOE,∠CDO=∠COD,
即等腰三角形有△OBC,△ADB,△AEC,△BEC,△BDC,△ABC,△EBO,△DCO,共8個,
故選A.
點評:本題考查了等腰三角形的性質(zhì)和判定,角平分線定義,三角形內(nèi)角和定理的應用,關(guān)鍵是能求出各個角的度數(shù).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案