閱讀下列解題過程,然后解題:
題目:已知
x
a-b
=
y
b-c
=
z
c-a
(a、b、c互不相等),求x+y+z的值.
解:設(shè)
x
a-b
=
y
b-c
=
z
c-a
=k
,則x=k(a-b),y=k(b-c),z=k(c-a),
∴x+y+z=k(a-b+b-c+c-a)=k•0=0,∴x+y+z=0.
依照上述方法解答下列問題:
已知:
y+z
x
=
z+x
y
=
x+y
z
,其中x+y+z≠0,求
x+y-z
x+y+z
的值.
分析:根據(jù)提示,先設(shè)比值為k,再利用等式列出三元一次方程組,即可求出k的值是2,然后把x+y=2z代入所求代數(shù)式.
解答:解:設(shè)
y+z
x
=
x+z
y
=
x+y
z
=k,
則:
y+z=kx(1)
x+z=ky(2)
x+y=kz(3)
,
(1)+(2)+(3)得:2x+2y+2z=k(x+y+z),
∵x+y+z≠0,
∴k=2,
∴原式=
2z-z
2z+z
=
z
3z
=
1
3
點評:本題主要考查分式的基本性質(zhì),重點是設(shè)“k”法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

先閱讀下列解題過程,然后解答問題(1)、(2)
解方程:|x+3|=2.
解:當(dāng)x+3≥0時,原方程可化為:x+3=2,解得x=-1;
當(dāng)x+3<0時,原方程可化為:x+3=-2,解得x=-5.
所以原方程的解是x=-1,x=-5.
(1)解方程:|3x-2|-4=0;
(2)探究:當(dāng)b為何值時,方程|x-2|=b+1 ①無解;②只有一個解;③有兩個解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

31、先閱讀下列解題過程,然后完成后面的題目.
分解因式:x4+4
解:x4+4=x4+4x2+4-4x2=(x2+2)2-4x2
=(x2+2x+2)(x2-2x+2)
以上解法中,在x4+4的中間加上一項,使得三項組成一個完全平方式,為了使這個式子的值保持與x4+4的值保持不變,必須減去同樣的一項.按照這個思路,試把多項式x4+x2y2+y4分解因式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列解題過程,然后解答問題(1)、(2)、(3).
例:解絕對值方程:|2x|=1.
解:討論:①當(dāng)x≥0時,原方程可化為2x=1,它的解是x=
1
2

②當(dāng)x<0時,原方程可化為-2x=1,它的解是x=-
1
2

∴原方程的解為x=
1
2
和-
1
2

問題(1):依例題的解法,方程|
1
2
x|
=3的解是
x=6和-6
x=6和-6
;
問題(2):嘗試解絕對值方程:2|x-2|=6;
問題(3):在理解絕對值方程解法的基礎(chǔ)上,解方程:|x-2|+|x-1|=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先閱讀下列解題過程,然后解答問題(1)、(2).
解方程:|3x|=1.
解:
①當(dāng)3x≥0時,原方程可化為一元一次方程為3x=1,它的解是x=
1
3

②當(dāng)3x<0時,原方程可化為一元一次方程為3x=-1,它的解是x=-
1
3

(1)請你模仿上面例題的解法,解方程:|x-1|=2.
(2)探究:求方程2|x-3|-6=0的解.

查看答案和解析>>

同步練習(xí)冊答案