⊙O1與⊙O2的半徑分別為5和3,若兩圓相交,請你寫出一個符合條件的圓心距
4(答案不唯一)
4(答案不唯一)
分析:根據(jù)兩圓相交,則圓心距大于兩圓半徑之差,而小于兩圓半徑之和解答即可.
解答:解:∵5-3=2,5+3=8,
∴2<圓心距<8,
∴只要大于2,而小于8即可,例如4.
故答案為:4(答案不唯一).
點評:考查了兩圓相交的位置關系和兩圓半徑之間的關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O1與⊙O2的公共弦,O1在⊙O2上,BD,O1C分別是⊙O1與⊙O2的直徑,CA與BD精英家教網(wǎng)的延長線交于E點,AB與O1C相交于M點.
(1)求證:EA是⊙O1的切線;
(2)連接AD,求證:AD∥O1C;
(3)若DE=1,設⊙O1與⊙O2的半徑分別為r,R,且
r
R
=
1
2
,求r的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、已知⊙O1與⊙O2的半徑r1、r2分別是方程x2-6x+8=0的兩實根,若⊙O1與⊙O2的圓心距d=5,則⊙O1與⊙O2的位置關系
相交

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1與⊙O2的半徑分別為7和5,且⊙O1與⊙O2相切,則O1O2等于
2或12
2或12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•畢節(jié)地區(qū))已知⊙O1與⊙O2的半徑分別是a,b,且a、b滿足|a-2|+
3-b
=0
,圓心距O1O2=5,則兩圓的位置關系是
外切
外切

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

⊙O1與⊙O2的半徑分別為2和5,當O1O2=2.5時,兩圓的位置關系是
內含
內含

查看答案和解析>>

同步練習冊答案