【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,點(diǎn)A的坐標(biāo)為(10,0),拋物線過點(diǎn)B,C兩點(diǎn),且與x軸的一個(gè)交點(diǎn)為D(﹣2,0),點(diǎn)P是線段CB上的動(dòng)點(diǎn),設(shè)CP=t(0<t<10).
(1)請(qǐng)直接寫出B、C兩點(diǎn)的坐標(biāo)及拋物線的解析式;
(2)過點(diǎn)P作PE⊥BC,交拋物線于點(diǎn)E,連接BE,當(dāng)t為何值時(shí),∠PBE=∠OCD?
(3)點(diǎn)Q是x軸上的動(dòng)點(diǎn),過點(diǎn)P作PM∥BQ,交CQ于點(diǎn)M,作PN∥CQ,交BQ于點(diǎn)N,當(dāng)四邊形PMQN為正方形時(shí),請(qǐng)求出t的值.
【答案】(1)B(10,4),C(0,4),;(2)3;(3)t的值為或.
【解析】
試題分析:(1)由拋物線的解析式可求得C點(diǎn)坐標(biāo),由矩形的性質(zhì)可求得B點(diǎn)坐標(biāo),由B、D的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;
(2)可設(shè)P(t,4),則可表示出E點(diǎn)坐標(biāo),從而可表示出PB、PE的長(zhǎng),由條件可證得△PBE∽△OCD,利用相似三角形的性質(zhì)可得到關(guān)于t的方程,可求得t的值;
(3)當(dāng)四邊形PMQN為正方形時(shí),則可證得△COQ∽△QAB,利用相似三角形的性質(zhì)可求得CQ的長(zhǎng),在Rt△BCQ中可求得BQ、CQ,則可用t分別表示出PM和PN,可得到關(guān)于t的方程,可求得t的值.
試題解析:
(1)在中,令x=0可得y=4,∴C(0,4),∵四邊形OABC為矩形,且A(10,0),∴B(10,4),把B、D坐標(biāo)代入拋物線解析式可得:,解得:,∴拋物線解析式為;
(2)由題意可設(shè)P(t,4),則E(t,),∴PB=10﹣t,PE=﹣4=,∵∠BPE=∠COD=90°,∠PBE=∠OCD,∴△PBE∽△OCD,∴,即BPOD=COPE,∴2(10﹣t)=4(),解得t=3或t=10(不合題意,舍去),∴當(dāng)t=3時(shí),∠PBE=∠OCD;
(3)當(dāng)四邊形PMQN為正方形時(shí),則∠PMC=∠PNB=∠CQB=90°,PM=PN,∴∠CQO+∠AQB=90°,∵∠CQO+∠OCQ=90°,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴,即OQAQ=COAB,設(shè)OQ=m,則AQ=10﹣m,∴m(10﹣m)=4×4,解得m=2或m=8;
①當(dāng)m=2時(shí),CQ= =,BQ==,∴sin∠BCQ= =,sin∠CBQ==,∴PM=PCsin∠PCQ=t,PN=PBsin∠CBQ=(10﹣t),∴t=(10﹣t),解得t=;
②當(dāng)m=8時(shí),同理可求得t=,∴當(dāng)四邊形PMQN為正方形時(shí),t的值為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年南充市各級(jí)各類學(xué)校學(xué)生人數(shù)約為1 150 000人,將1 150 000 用科學(xué)計(jì)數(shù)法表示為( )
A.1.15×106B.1.15×107C.11.5×105D.0.115×107
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)A(﹣3,5)和點(diǎn)B(﹣3,2)作直線,則直線AB( )
A.平行于x軸
B.平行于y軸
C.與y軸相交
D.垂直于y軸
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF= ,BD=2,則菱形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個(gè)以點(diǎn)D為頂點(diǎn)的45°角繞點(diǎn)D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長(zhǎng)線相交,交點(diǎn)分別為點(diǎn)E,F(xiàn),DF與AC交于點(diǎn)M,DE與BC交于點(diǎn)N.
(1)如圖1,若CE=CF,求證:DE=DF;
(2)如圖2,在∠EDF繞點(diǎn)D旋轉(zhuǎn)的過程中:
①探究三條線段AB,CE,CF之間的數(shù)量關(guān)系,并說明理由;
②若CE=4,CF=2,求DN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩邊長(zhǎng)分別為5,12的直角三角形,其斜邊上的中線長(zhǎng)為___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為從甲、乙兩名射擊運(yùn)動(dòng)員中選出一人參加市錦標(biāo)賽,特統(tǒng)計(jì)了他們最近10次射擊訓(xùn)練的成績(jī),其中,他們射擊的平均成績(jī)都為8.9環(huán),方差分別是S甲2=0.8,S乙2=1.3,從穩(wěn)定性的角度來看的成績(jī)更穩(wěn)定.(填“甲”或“乙”)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com