拋物線y=-(x-L)(x-3-k)+L與拋物線y=(x-3)2+4關于原點對稱,則L+k=   
【答案】分析:利用函數(shù)的性質(zhì).
解答:解:整理拋物線y=-(x-L)(x-3-k)+L,得:y=-x2+(3+k+L)x-2L-Lk;
整理拋物線y=(x-3)2+4得y=x2-6x+13.
∵兩拋物線關于原點對稱,
∴y=(x-3)2+4關于原點對稱的函數(shù)的解析式是Ly=-(x+3)2-4,即y=-x2-6x-13.
∴3+k+L=-6
那么k+L=-9.
故答案是:-9.
點評:解決本題的關鍵是理解兩個函數(shù)中x,y都互為相反數(shù),代入后讓相應的系數(shù)相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,直線y=
4
3
x-4與x軸交于點A,與y軸交于點C,已知二次函數(shù)y=
4
3
x2+bx+c的圖象經(jīng)過點精英家教網(wǎng)A和C,和x軸的另一個交點為B.
(1)求該二次函數(shù)的關系式;
(2)直接寫出該拋物線的對稱軸及頂點M的坐標;
(3)求四邊形ABCM的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

求過(-1,0),(3,0),(1,-5)三點的拋物線的解析式,并畫出該拋物線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

拋物線y=(k2-2)x2-4kx+m的對稱軸是直線x=2,且它的最低點在直線y=-2x+2上,求:
(1)函數(shù)解析式;
(2)若拋物線與x軸交點為A、B與y軸交點為C,求△ABC面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知拋物線C1:y=x2-2x的圖象如圖所示,把C1的圖象沿y軸翻折,得到拋物線C2的圖象,拋物線C1與拋物線C2的圖象合稱圖象C3
(1)求拋物線C1的頂點A坐標,并畫出拋物線C2的圖象;
(2)若直線y=kx+b與拋物線y=ax2+bx+c(a≠0)有且只有一個交點時,稱直線與拋物線相切.若直線y=x+b與拋物線C1相切,求b的值;
(3)結合圖象回答,當直線y=x+b與圖象C3有兩個交點時,b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一單桿高2.2m,兩立柱之間的距離為1.6m,將一根繩子的兩端栓于立柱與鐵杠結合處,繩子自然下垂呈拋物線狀.
(1)一身高0.7m的小孩站在離立柱0.4m處,其頭部剛好觸上繩子,求繩子最低點到地面的距離;
(2)為供孩子們打秋千,把繩子剪斷后,中間系上一塊長為0.4米的木板,除掉系木板用去的繩子后,兩邊的繩子正好各為2米,木板與地面平行,求這時木板到地面的距離.(供選用數(shù)據(jù):
3.36
≈1.8,
3.64
≈1.9,
4.39
≈2.1)
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案