四邊形ABCD為菱形,E為BC邊上的中點,P為對角線BD上一點,要使PE+PC最小,則應滿足( )
A.PE=PC
B.PE⊥PC
C.PB=PD
D.∠BAE=∠BCP
【答案】分析:當PE+PC=PE+AP=AE,取最小值,所以要證明△ABP≌△CBP,即滿足的條件是∠BAE=∠BCP.
解答:解:連接AC,AE,AE與BD交于點P,
此時,PE+PC=PE+AP=AE,取最小值,
應滿足的條件是∠BAE=∠BCP,
可證明△ABP≌△CBP,
PA=PC.
故選D.
點評:考查菱形的性質和軸對稱及平行四邊形的判定等知識的綜合應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知A(-3,0),B(0,-4).點P為雙曲線y=
k
x
(x>0,k>0)
上的任精英家教網(wǎng)意一點,過點P作PC⊥x軸于點C,PO⊥y軸于點D.
(1)當四邊形ABCD為菱形時,求雙曲線的解析式;
(2)若點p為直線y=
3
4
x
與(1)所求的雙曲線的交點,試判定此時四邊形ABCD的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:在四邊形ABCD中,AB=1,E、F、G、H分別時AB、BC、CD、DA上的點,且AE=BF=CG=DH.設四邊形EFGH的面積為S,AE=x(0≤x≤1).
(1)如圖①,當四邊形ABCD為正方形時,
①求S關于x的函數(shù)解析式,并求S的最小值S0;
②在圖②中畫出①中函數(shù)的草圖,并估計S=0.6時x的近似值(精確到0.01);
(2)如圖③,當四邊形ABCD為菱形,且∠A=30°時,四邊形EFGH的面積是否存在最小值?若存在,求出最小值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD為菱形,則tan
A
2
等于( 。
A、
3
4
B、
5
3
C、
3
5
D、
4
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,四邊形ABCD為菱形,點A,B的坐標分別為(3,0)、(0,4),動點M從點B出發(fā),以每秒1個單位的速度沿BA向終點A運動,連接MO并延長交CD于精英家教網(wǎng)點N,過點N作NP⊥BD,交BD于點P,連接MP,當動點M運動了t秒時.
(1)N點的坐標為
 
,P點的坐標為
 
(用含t的代數(shù)式表示);
(2)記△MNP的面積為S,求S與t的函數(shù)關系式(0<t<5),并求出當t取何值時,S有最大值,最大值是多少?
(3)在M出發(fā)的同時,有一動點Q從A點開始在線段AO上以每秒
12
個單位長度的速度向點O移動,試求當t為何值時,△AMQ與△AOB相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,每個小方格都是邊長為1個單位的小正方形,B,C,D三點都是格點(每個小方格的頂點叫格點).
(1)找出格點A,連接AB,AD使四邊形ABCD為菱形;
(2)畫出菱形ABCD沿直線l翻折后的圖形;
(3)請求出四邊形ABCD的面積.

查看答案和解析>>

同步練習冊答案