先閱讀下列第(1)題的解答過程,再解第(2)題.
(1)已知實(shí)數(shù)a、b滿足a2=2-2a,b2=2-2b,且a≠b,求
a
b
+
b
a
的值.
由已知得:a2+2a-2=0,b2+2b-2=0,且a≠b,故a、b是方程:x2+2x-2=0的兩個(gè)不相等的實(shí)數(shù)根,由根與系數(shù)的關(guān)系得:a+b=-2,ab=-2.
a
b
+
b
a
=
(a+b)2-2ab
ab
=4.
(2)已知p2-2p-5=0,5q2+2q-1=0,其中p、q為實(shí)數(shù),求p2+
1
q2
的值.
由5q2+2q-1=0兩邊同除以-q2,得:
1
q2
-
2
q
-5=0,而p2-2p-5=0,
故p和
1
q
是方程x2-2x-5=0的兩根,
由根與系數(shù)的關(guān)系得:p+
1
q
=2,p•
1
q
=-5,
所以p2+
1
q2
=(p+
1
q
2-2×
p
q
=14.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列第(1)題的解答過程,再解第(2)題.
(1)已知實(shí)數(shù)a、b滿足a2=2-2a,b2=2-2b,且a≠b,求
a
b
+
b
a
的值.
解:由已知得:a2+2a-2=0,b2+2b-2=0,且a≠b,故a、b是方程:x2+2x-2=0的兩個(gè)不相等的實(shí)數(shù)根,由根與系數(shù)的關(guān)系得:a+b=-2,ab=-2.
a
b
+
b
a
=
(a+b)2-2ab
ab
=-4.
(2)已知p2-2p-5=0,5q2+2q-1=0,其中p、q為實(shí)數(shù),求p2+
1
q2
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2001•黃岡)先閱讀下列第(1)題的解答過程:
(1)已知a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,求a2+3β2+4β的值.
解法1:∵a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,
∴a2+2a-7=0,β2+2β-7=0,且a+β=-2.
∴a2=7-2a,β2=7-2β.
∴a2+3β2+4β=7-2a+3(7-2β)+4β=28-2(a+β)=28-2×(-2)=32.
解法2:由求根公式得a=1+2
2
,β=-1-2
2

∴a2+3β2+4β=(-1+2
2
2+3(-1-2
2
2+4(-1-2
2

=9-4
2
+3(9+4
2
)-4-8
2
=32.
當(dāng)a=-1-2
2
,β=-1+2
2
時(shí),同理可得a2+3β2+4β=32.
解法3:由已知得a+β=-2,aβ=-7.
∴a22=(a+β)2-2aβ=18.
令a2+3β2+4β=A,β2+3a2+4a=B.
∴A+B=4(a22)+4(a+β)=4×18+4×(-2)=64.①
A-B=2(β2-a2)+4(β-a)=2(β+a)(β-a)+4(β-a)=0.②
①+②,得2A=64,∴A=32.
請(qǐng)仿照上面的解法中的一種或自己另外尋注一種方法解答下面的問題:
(2)已知x1,x2是方程x2-x-9=0的兩個(gè)實(shí)數(shù)根,求代數(shù)式x13+7x22+3x2-66的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

先閱讀下列第(1)題的解答過程:
(1)已知a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,求a2+3β2+4β的值.
解法1:∵a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,
∴a2+2a-7=0,β2+2β-7=0,且a+β=-2.
∴a2=7-2a,β2=7-2β.
∴a2+3β2+4β=7-2a+3(7-2β)+4β=28-2(a+β)=28-2×(-2)=32.
解法2:由求根公式得a=1+2數(shù)學(xué)公式,β=-1-2數(shù)學(xué)公式
∴a2+3β2+4β=(-1+2數(shù)學(xué)公式2+3(-1-2數(shù)學(xué)公式2+4(-1-2數(shù)學(xué)公式
=9-4數(shù)學(xué)公式+3(9+4數(shù)學(xué)公式)-4-8數(shù)學(xué)公式=32.
當(dāng)a=-1-2數(shù)學(xué)公式,β=-1+2數(shù)學(xué)公式時(shí),同理可得a2+3β2+4β=32.
解法3:由已知得a+β=-2,aβ=-7.
∴a22=(a+β)2-2aβ=18.
令a2+3β2+4β=A,β2+3a2+4a=B.
∴A+B=4(a22)+4(a+β)=4×18+4×(-2)=64.①
A-B=2(β2-a2)+4(β-a)=2(β+a)(β-a)+4(β-a)=0.②
①+②,得2A=64,∴A=32.
請(qǐng)仿照上面的解法中的一種或自己另外尋注一種方法解答下面的問題:
(2)已知x1,x2是方程x2-x-9=0的兩個(gè)實(shí)數(shù)根,求代數(shù)式x13+7x22+3x2-66的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年湖北省黃岡市中考數(shù)學(xué)試卷(解析版) 題型:解答題

先閱讀下列第(1)題的解答過程:
(1)已知a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,求a2+3β2+4β的值.
解法1:∵a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,
∴a2+2a-7=0,β2+2β-7=0,且a+β=-2.
∴a2=7-2a,β2=7-2β.
∴a2+3β2+4β=7-2a+3(7-2β)+4β=28-2(a+β)=28-2×(-2)=32.
解法2:由求根公式得a=1+2,β=-1-2
∴a2+3β2+4β=(-1+22+3(-1-22+4(-1-2
=9-4+3(9+4)-4-8=32.
當(dāng)a=-1-2,β=-1+2時(shí),同理可得a2+3β2+4β=32.
解法3:由已知得a+β=-2,aβ=-7.
∴a22=(a+β)2-2aβ=18.
令a2+3β2+4β=A,β2+3a2+4a=B.
∴A+B=4(a22)+4(a+β)=4×18+4×(-2)=64.①
A-B=2(β2-a2)+4(β-a)=2(β+a)(β-a)+4(β-a)=0.②
①+②,得2A=64,∴A=32.
請(qǐng)仿照上面的解法中的一種或自己另外尋注一種方法解答下面的問題:
(2)已知x1,x2是方程x2-x-9=0的兩個(gè)實(shí)數(shù)根,求代數(shù)式x13+7x22+3x2-66的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案