已知矩形紙片ABCD中,AB=2,BC=3.

操作:將矩形紙片沿EF折疊,使點B落在邊CD上.

探究:

(1)如下圖,若點B與點D重合,你認為△EDA1和△FDC全等嗎?如果全等給出證明,如果不全等請說明理由;

(2)如下圖,若點BCD的中點重合,求△FCB1和△B1DG的周長之比.

答案:
解析:

  解:(1)全等

  證明:∵四邊形ABCD是矩形

  ∴∠A=∠B=∠C=∠ADC=90°,AB=CD

  由題意知:∠A=∠,∠B=∠DF=90°,AB=D

  ∴∠=∠C=90°,∠CDF+∠EDF=90°

  ∴∠DE=∠CDF

  ∴△ED≌△EDC(ASA)

  (2)∵∠DGB1+∠DB1G=90°,∠DB1G+∠CB1F=90°

  ∴∠DGB1=∠CB1F

  ∵∠D=∠C=90°

  ∴△FCB1∽△B1DG

  設(shè)FC=,則B1F=BF=,B1C=DC=1

  ∴

  ∴

  ∵△FCB1∽△B1DG

  ∴


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知矩形紙片ABCD中,AD=6,AB=a(a<6),在BC邊上取一點M,將△ABM沿AM折疊后點B恰好落在矩形ABCD的對稱中心O處,則a的值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知矩形紙片ABCD,AB=2,AD=1,將紙片折疊,使頂點A與邊CD上的點E重合.
(1)如果折痕FG分別與AD、AB交于點F、G(如圖1),AF=
23
,求DE的長;
(2)如果折痕FG分別與CD、AB交于點F、G(如圖2),△AED的外接圓與直線BC相切,求折痕FG的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知矩形紙片ABCD中,AB=3,BC=6,E在矩形ABCD的邊AD上,點F在矩形ABCD的邊BC上,且BF=5,把矩形紙片ABCD沿EF折疊,BF的對應(yīng)線段FB′交邊AD于點G.

(1)判斷△EFG是何種特殊三角形,并證明你的結(jié)論.
(2)在折疊過程中,不重疊部分(陰影圖形)的周長之和p會發(fā)生變化嗎?若不變化,請求出p的值;若變化,請說明理由.
(3)當△EFG是銳角三角形時,求AE的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

①如圖1,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C’處,折痕為EF,若∠ABE=20°,那么∠EFC’的度數(shù)為
125
125
°.
②如圖2,已知矩形紙片ABCD,點E 是AB的中點,點G是BC上的一點,∠BEG>60°,現(xiàn)沿直線EG將紙片折疊,使點B落在紙片上的點H處,連接AH,則與∠BEG相等的角的個數(shù)為
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知矩形紙片ABCD中,AB=4,BC=6.

(1)如圖1,點E是BC邊上的一點,BE=2,AE、BD交于點F.①求AF:FE的值;②求△BEF的面積;
(2)如圖2,將矩形紙片沿MN折疊,使點B與邊CD的中點重合,點A、B的對應(yīng)點為A1、B1,A1B1與DN交于點G,求△MCB1和△B1DG的周長之比.

查看答案和解析>>

同步練習冊答案