如圖,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,則CF等于
A.
B.1
C.
D.2
分析:根據(jù)矩形的性質(zhì)得到AD=BC=5,∠D=∠B=∠C=90°,根據(jù)三角形的角平分線的性質(zhì)得到DF=EF,由勾股定理求出AE、BE,證△ABE∽△ECF,得出=,代入求出即可. 解答:解:∵四邊形ABCD是矩形, ∴AD=BC=5,∠D=∠B=∠C=90°, ∵AF平分∠DAE,EF⊥AE, ∴DF=EF, 由勾股定理得:AE=AD=5, 在△ABE中由勾股定理得:BE==3, ∴EC=5-3=2, ∵∠BAE+∠AEB=90°,∠AEB+∠FEC=90°, ∴∠BAE=∠FEC, ∴△ABE∽△ECF, ∴=, ∴=, ∴CF=. 故選C. 點(diǎn)評(píng):本題主要考查對(duì)矩形的性質(zhì),勾股定理,三角形的角平分線的性質(zhì),全等三角形的性質(zhì)和判定等知識(shí)點(diǎn)的理解和掌握,求出AE、BE的長(zhǎng)和證出△ABE∽△ECF是解此題的關(guān)鍵. |
考點(diǎn):勾股定理;解一元一次方程;角平分線的性質(zhì);矩形的性質(zhì);相似三角形的判定與性質(zhì). |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、a≥
| ||
B、a≥b | ||
C、a≥
| ||
D、a≥2b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com