某服裝廠現(xiàn)有A種布料70米,B種布料52米,現(xiàn)計(jì)劃用這兩種布料生產(chǎn)M、N兩種型號(hào)的時(shí)裝80套,每套時(shí)裝所需布料以及利潤(rùn)見表:若設(shè)作業(yè)寶生產(chǎn)M型號(hào)的時(shí)裝x套,用這批布料生產(chǎn)這兩種型號(hào)的時(shí)裝所獲得的總利潤(rùn)為y元,求:
(1)y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)該服裝廠生產(chǎn)M型號(hào)的時(shí)裝多少套時(shí)所獲利潤(rùn)最大?最大利潤(rùn)多少元?

解:(1)y=45x+(80-x)×50
y=-5x+4000
0.6×x+1×(80-x)≤70①
0.9×x+0.4×(80-x)≤52②
故25≤x≤40;

(2)y=-5x+4000圖象成直線,是減函數(shù),
所以當(dāng)x取最小值25時(shí)y有最大值,
y=-5×25+4000=3875.
該服裝廠在生產(chǎn)這批服裝中,當(dāng)生產(chǎn)M型號(hào)25套,N型號(hào)55套時(shí),所獲利潤(rùn)最多,最多是3875元.
分析:(1)生產(chǎn)這兩種時(shí)裝的利潤(rùn)=生產(chǎn)M的利潤(rùn)+生產(chǎn)N時(shí)裝的利潤(rùn),然后化簡(jiǎn)得出函數(shù)關(guān)系式,再根據(jù)有A種布料70米,B種布料52米來判斷出自變量的取值范圍;
(2)由(1)中得出的函數(shù)式的性質(zhì)來判定出哪種方案最好.
點(diǎn)評(píng):本題主要考查用一次函數(shù)研究實(shí)際問題,注意自變量的取值范圍不能遺漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某服裝廠現(xiàn)有甲種布料42米,乙種布料30米.現(xiàn)計(jì)劃用這兩種布料生產(chǎn)M,N兩種型號(hào)的校服共40件,已知做一件M型號(hào)的校服需要用甲種布料0.8米,乙種布料1.1米.做一件N型號(hào)的校服需用甲種布料1.2米,乙種布料0.5米,按要求生產(chǎn)M,N兩種型號(hào)的校服,有哪幾種生產(chǎn)方案?請(qǐng)你設(shè)計(jì)出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黃岡一模)某服裝廠現(xiàn)有A種布料70米,B種布料52米,現(xiàn)計(jì)劃用這兩種布料生產(chǎn)M、N兩種型號(hào)的時(shí)裝80套,每套時(shí)裝所需布料以及利潤(rùn)見表:若設(shè)生產(chǎn)M型號(hào)的時(shí)裝x套,用這批布料生產(chǎn)這兩種型號(hào)的時(shí)裝所獲得的總利潤(rùn)為y元,求:
(1)y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)該服裝廠生產(chǎn)M型號(hào)的時(shí)裝多少套時(shí)所獲利潤(rùn)最大?最大利潤(rùn)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某服裝廠現(xiàn)有A種布料70米,B種布料52米.現(xiàn)計(jì)劃用這兩種布料生產(chǎn)M、N兩種型號(hào)的時(shí)裝共80套,已知做一套M型號(hào)時(shí)裝需用A種布料0.6米,B種布料0.9米;做一套N型號(hào)時(shí)裝需用A種布料1.1米,B種布料0.4米.本著最大限度使用現(xiàn)有布料的原則,請(qǐng)你設(shè)計(jì)這兩種型號(hào)時(shí)裝的生產(chǎn)方案(即兩種型號(hào)時(shí)裝分別計(jì)劃生產(chǎn)的套數(shù)),有幾種?請(qǐng)寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題10分)某服裝廠現(xiàn)有A種布料70m,B種布料52m,現(xiàn)計(jì)劃用這兩種布料生產(chǎn)M, N兩種型號(hào)的時(shí)裝80套,已知做一套M型號(hào)的時(shí)裝需要A種布料0.6m,B種布料0.9m,可獲利45元,做一套N型號(hào)的時(shí)裝需要A種布料1.1m,B種布料0.4m,可獲利50元,若設(shè)生產(chǎn)N型號(hào)的時(shí)裝套數(shù)為x,用這批布料生產(chǎn)這兩種型號(hào)的時(shí)裝所獲的總利潤(rùn)為y元。
【小題1】(1)求y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍。
【小題2】(2)該服裝廠在生產(chǎn)這批時(shí)裝中,當(dāng)生產(chǎn)N型號(hào)的時(shí)裝多少套時(shí),所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某服裝廠現(xiàn)有A種布料70m,B種布料52m,現(xiàn)計(jì)劃用這兩種布料生產(chǎn)M、N兩種型號(hào)的時(shí)裝80套。已知做一套M型號(hào)的時(shí)裝需要A種布料0.6m,B種布料0.9m,可獲利45元;做一套N型號(hào)的時(shí)裝需要A種布料1.1m,B種布料0.4 m,可獲利50元。若設(shè)生產(chǎn)N型號(hào)的時(shí)裝套數(shù)為x,用這批布料生產(chǎn)這兩種型號(hào)的時(shí)裝所獲的總利潤(rùn)為y元。
(1)求y與x的函數(shù)關(guān)系式,并求出x的取值范圍;(2)該服裝廠在生產(chǎn)這批時(shí)裝中,當(dāng)生產(chǎn)N型號(hào)的時(shí)裝多少套時(shí),所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案