已知關(guān)于x的方程.
(1)若這個(gè)方程有實(shí)數(shù)根,求k的取值范圍;
(2)若這個(gè)方程有一個(gè)根為1,求k的值;
(3)若以方程的兩個(gè)根為橫坐標(biāo)、縱坐標(biāo)的點(diǎn)恰在反比例函數(shù)的圖象上,求滿足條件的m的最小值.
(1)、k≤5;(2)、k1=3-,k2=3+;(3)-5.
【解析】
試題分析:本題易用一元二次方程根的判別式和根與系數(shù)的關(guān)系求解,是一個(gè)綜合性的題目,也是一個(gè)難度中等的題目.一元二次方程根的情況與判別式△的關(guān)系:△>0⇔方程有兩個(gè)不相等的實(shí)數(shù)根;△=0⇔方程有兩個(gè)相等的實(shí)數(shù)根;△<0⇔方程沒有實(shí)數(shù)根.(1)若一元二次方程有實(shí)數(shù)根,則根的判別式△=b2-4ac≥0,建立關(guān)于k的不等式,求出k的取值范圍.(2)將x=1代入方程,得到關(guān)于k的方程,求出即可,(3)寫出兩根之積,兩根之積等于m,進(jìn)而求出m的最小值.
試題解析:
解:(1)由題意得△=[-2(k-3)]2-4×(k2-4k-1)≥0
化簡(jiǎn)得-2k+10≥0,解得k≤5.
(2)將1代入方程,整理得k2-6k+6=0,解這個(gè)方程得k1=3-,k2=3+.
(3)設(shè)方程x2-2(k-3)x+k2-4k-1=0的兩個(gè)根為x1,x2,
根據(jù)題意得m=x1x2.又由一元二次方程根與系數(shù)的關(guān)系得x1x2=k2-4k-1,
即:m=k2-4k-1=(k-2)2-5,所以,當(dāng)k=2時(shí),m有最小值-5.
考點(diǎn):根與系數(shù)的關(guān)系;一元二次方程的解;根的判別式;反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com