精英家教網(wǎng)已知線段AB,根據(jù)下列步驟作圖,然后回答:
(1)延長AB至C,使BC=
3
2
AB;
(2)再反向延長線段AB至D,使AD=
1
2
AB;
(3)線段CD是線段AD的多少倍?
分析:設(shè)AB=x,根據(jù)題意表示出CD的長度繼而可得出答案.
解答:解:設(shè)AB=x,則BC=
3
2
x,AD=
1
2
x,精英家教網(wǎng)
∴CD=AD+AB+BC=3x,
∴線段CD是線段AD的6倍.
點(diǎn)評:本題考查比較線段的長短,比較簡單,注意正確理解題意.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)精英家教網(wǎng)如圖Rt△ABC中,∠A=90°,tanB=
34
,點(diǎn)D以每秒4個(gè)單位的速度從點(diǎn)B沿BA向終點(diǎn)A移動(dòng),點(diǎn)E、F分別在線段BC,AC上,且四邊形ADEF是矩形,設(shè)AB長為a,運(yùn)動(dòng)時(shí)間為x,矩形ADEF的面積為y,已知y是x的函數(shù),其圖象是過點(diǎn)(1,24)的拋物線的一部分.
(1)求y與x之間的函數(shù)關(guān)系式(用含a的代數(shù)式表示);并求AB的長;
(2)在(1)的條件下求:
①當(dāng)x為何值時(shí),矩形ADEF的面積最大,并求出最大值.
②以線段AF為直徑作⊙O1,以線段BE為直徑作⊙O2,根據(jù)⊙O1和⊙O2的交點(diǎn)個(gè)數(shù)求相應(yīng)的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時(shí)出發(fā),勻速行駛設(shè)行駛的時(shí)間為x(時(shí)),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中y與x之間的函數(shù)關(guān)系.
精英家教網(wǎng)(1)根據(jù)圖中信息,求線段AB所在直線的函數(shù)解析式和甲乙兩地之間的距離;
(2)已知兩車相遇時(shí)快車比慢車多行駛40千米,若快車從甲地到達(dá)乙地所需時(shí)間為t時(shí),求t的值;
(3)在(2)的條件下,若快車到達(dá)乙地后立刻返回甲地,慢車到達(dá)甲地后停止行駛,請你在圖中畫出快車從乙地返回到甲地過程中y關(guān)于x的函數(shù)的大致圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:對于任意正實(shí)數(shù)a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b
≥0,∴a+b≥2
ab
,只有當(dāng)a=b時(shí),等號成立.
結(jié)論:在a+b≥2
ab
(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p
.   
根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m=
 
時(shí),m+
1
m
有最小值
 

若m>0,只有當(dāng)m=
 
時(shí),2m+
8
m
有最小值
 

(2)如圖,已知直線L1y=
1
2
x+1
與x軸交于點(diǎn)A,過點(diǎn)A的另一直線L2與雙曲線y=
-8
x
(x>0)
相交于點(diǎn)B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CD∥y軸交直線L1于點(diǎn)D,試求當(dāng)線段CD最短精英家教網(wǎng)時(shí),點(diǎn)A、B、C、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知長方形OABC的長AB=5,寬BC=3,將它的頂點(diǎn)O落在平面直角坐標(biāo)系的原點(diǎn)上,頂點(diǎn)A,C兩點(diǎn)分別落在x,y軸上,點(diǎn)B在第一象限內(nèi),根據(jù)下列圖示回答問題:
(1)如圖1,寫出點(diǎn)的坐標(biāo):A(
3,0
3,0
),B(
3,5
3,5
),C(
0,5
0,5
);
(2)如圖2,若過點(diǎn)C的直線CD交AB于D,且把長方形OABC的周長分為3:1兩部分,則點(diǎn)D的坐標(biāo)是(
3,4
3,4

(3)如圖3,將(2)中的線段CD向下平移2個(gè)單位,得到C′D′,試計(jì)算四邊形OAD′C′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2010•紹興)一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時(shí)出發(fā),勻速行駛設(shè)行駛的時(shí)間為x(時(shí)),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中y與x之間的函數(shù)關(guān)系.
(1)根據(jù)圖中信息,求線段AB所在直線的函數(shù)解析式和甲乙兩地之間的距離;
(2)已知兩車相遇時(shí)快車比慢車多行駛40千米,若快車從甲地到達(dá)乙地所需時(shí)間為t時(shí),求t的值;
(3)在(2)的條件下,若快車到達(dá)乙地后立刻返回甲地,慢車到達(dá)甲地后停止行駛,請你在圖中畫出快車從乙地返回到甲地過程中y關(guān)于x的函數(shù)的大致圖象.

查看答案和解析>>

同步練習(xí)冊答案