已知:直線y=x+6交x、y軸于A、C兩點,經(jīng)過A、O兩點的拋物線y=ax2+bx(a<0)的頂點在直線AC精英家教網(wǎng)上.
(1)求A、C兩點的坐標;
(2)求出拋物線的函數(shù)關(guān)系式;
(3)以B點為圓心,以AB為半徑作⊙B,將⊙B沿x軸翻折得到⊙D,試判斷直線AC與⊙D的位置關(guān)系,并求出BD的長;
(4)若E為⊙B劣弧OC上一動點,連接AE、OE,問在拋物線上是否存在一點M,使∠MOA:∠AEO=2:3?若存在,試求出點M的坐標;若不存在,試說明理由.
分析:(1)根據(jù)過A、C兩點的直線的解析式即可求出A,C的坐標.
(2)根據(jù)A,O的坐標即可得出拋物線的對稱軸的解析式,然后將A點坐標代入拋物線中,聯(lián)立上述兩式即可求出拋物線的解析式.
(3)直線與圓的位置關(guān)系無非是相切與否,可連接AD,證AD是否與AC垂直即可.由于B,D關(guān)于x軸對稱,那么可得出∠CAO=∠DAO=45°,因此可求出∠DAB=90°,即DA⊥AC,因此AC與圓D相切.
(4)根據(jù)圓周角定理可得出∠AEO=45°,那么∠MOA=30°,即M點的縱坐標的絕對值和橫坐標的絕對值的比為tan30°,由此可得出x,y的比例關(guān)系式,然后聯(lián)立拋物線的解析式即可求出M點的坐標.(要注意的是本題要分點M在x軸上方還是下方兩種情況進行求解)
解答:解:(1)A(-6,0),C(0,6)

(2)∵拋物線y=ax2+bx(a<0)經(jīng)過A(-6,0),0(0,0).
∴對稱軸x=-
b
2a
=-3,b=6a…①
當x=-3時,代入y=x+6得y=-3+6=3,精英家教網(wǎng)
∴B點坐標為(-3,3).
∵點B在拋物線y=ax2+bx上,
∴3=9a-3b…②
結(jié)合①②解得a=-
1
3
,b=-2,
∴該拋物線的函數(shù)關(guān)系式為y=-
1
3
x2-2x.

(3)相切
理由:連接AD,
∵AO=OC
∴∠ACO=∠CAO=45°
∵⊙B與⊙D關(guān)于x軸對稱
∴∠BAO=∠DAO=45°
∴∠BAD=90°
又∵AD是⊙D的半徑,
∴AC與⊙D相切.
∵拋物線的函數(shù)關(guān)系式為y=-
1
3
x2-2x,
∴函數(shù)頂點坐標為(-3,3),
由于D、B關(guān)于x軸對稱,
則BD=3×2=6.

(4)存在這樣的點M.
設(shè)M點的坐標為(x,y)
∵∠AEO=∠ACO=45°
而∠MOA:∠AEO=2:3
∴∠MOA=30°
當點M在x軸上方時,
y
-x
=tan30°=
3
3
,
∴y=-
3
3
x.
∵點M在拋物線y=-
1
3
x2-2x上,
∴-
3
3
x=-
1
3
x2-2x,
解得x=-6+
3
,x=0(不合題意,舍去)
∴M(-6+
3
,-1+2
3
).
當點M在x軸下方時,
-y
-x
=tan30°=
3
3
,
∴y=
3
3
x,
∵點M在拋物線y=-
1
3
x2-2x上.
3
3
x=-
1
3
x2-2x,
解得x=-6-
3
,x=0(不合題意,舍去).
∴M(-6-
3
,-1-2
3
),
∴M的坐標為(-6+
3
,-1+2
3
)或(-6-
3
,-1-2
3
).
點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、圖形旋轉(zhuǎn)變換、切線的判定、圓周角定理等知識點,綜合性強,考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:直線y=-
n
n+1
x+
2
n+1
(n為正整數(shù))與兩坐標軸圍成的三角形面積為Sn,則S1+S2+S3+…+S2011=( 。
A、
1005
2011
B、
2011
2012
C、
2010
2011
D、
2011
4024

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,已知兩直線a,b相交于O,∠2=30°,則∠1=
150
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)在平面直角坐標系中,△ABC的頂點分別是A(-1,0),B(3,0),C(0,2),已知動直線y=m(0<m<2)與線段AC、BC分別交于D、E兩點,而在x軸上存在點P,使得△DEP為等腰直角三角形,那么m的值等于
4
3
或1
4
3
或1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:直線y=-2x+4交x軸于點A,交y軸于點B,點C為x軸上一點,AC=1,且OC<OA.拋物線y=ax2+bx+c(a≠0)經(jīng)過點A、B、C.
(1)求該拋物線的表達式;
(2)點D的坐標為(-3,0),點P為線段AB上的一點,當銳角∠PDO的正切值是
12
時,求點P的坐標;
(3)在(2)的條件下,該拋物線上的一點E在x軸下方,當△ADE的面積等與四邊形APCE的面積時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:直線y=kx+b的圖象過點A(-3,1);B(-1,2),
(1)求:k和b的值;
(2)求:△AOB的面積(O為坐標原點);
(3)在x軸上有一動點C使得△ABC的周長最小,求C點坐標.

查看答案和解析>>

同步練習(xí)冊答案