如圖①,Rt△ABC中,∠B=90°,∠CAB=30°.它的頂點A的坐標為(10,0),頂點B的坐標為,AB=10,點P從點A出發(fā),沿A→B→C的方向勻速運動,同時點Q從點D(0,2)出發(fā),沿y軸正方向以相同速度運動,當點P到達點C時,兩點同時停止運動,設運動的時間為t秒.

(1)求∠BAO的度數(shù).

(2)當點P在AB上運動時,△OPQ的面積S(平方單位)與時間t(秒)之間的函數(shù)圖象為拋物線的一部分,(如圖②),求點P的運動速度.

(3)求(2)中面積S與時間t之間的函數(shù)關系式及面積S取最大值時點P的坐標.

(4)如果點P,Q保持(2)中的速度不變,那么點P沿AB邊運動時,∠OPQ的大小隨著時間t的增大而增大;沿著BC邊運動時,∠OPQ的大小隨著時間t的增大而減小,當點P沿這兩邊運動時,使∠OPQ=90°的點P有幾個?請說明理由.

答案:
解析:

  (1).    2分

  (2)點的運動速度為2個單位/秒.    4分

  (3)()

      6分

  

  時,有最大值為,

  此時.    9分

  (4)當點沿這兩邊運動時,的點有2個.    11分

 、佼旤c與點重合時,,

  當點運動到與點重合時,的長是12單位長度,

  作軸于點,作軸于點,

  由得:

  所以,從而

  所以當點邊上運動時,的點有1個.    13分

 、谕懋旤c邊上運動時,可算得

  而構成直角時交軸于,

  所以,從而的點也有1個.

  所以當點沿這兩邊運動時,的點有2個.    14分


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•和平區(qū)二模)如圖,在Rt△ABC中,∠BAC=90°,AB=6,AM為∠BAC的平分線,CM=2BM.下列結論:
①tan∠MAC=
2
2
;②點M到AB的距離是4;③
AC
CM
=
BC
CA
;④∠B=2∠C;⑤
CM
AB
=
2
,
其中不正確結論的序號是
①③④⑤
①③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遵義)如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,E為BC邊上的一點,以A為圓心,AE為半徑的圓弧交AB于點D,交AC的延長于點F,若圖中兩個陰影部分的面積相等,則AF的長為
2
π
π
2
π
π
(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=9cm,則AB的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線BD交AC于點D,DE⊥DB交AB于點E,設⊙O是△BDE的外接圓.
(1)求證:AC是⊙O的切線;
(2)若DE=2,BD=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)如圖,在Rt△ABC中,∠ACB=90°,點D在AC邊上,且BC2=CD•CA.
(1)求證:∠A=∠CBD;
(2)當∠A=α,BC=2時,求AD的長(用含α的銳角三角比表示).

查看答案和解析>>

同步練習冊答案