(1)證明:∵OM∥BN,MN∥OB,∠AOB=90°
∴四邊形OBNM為矩形
∴MN=OB=1,∠PMO=∠CNP=90°
∵OA=OB,
∴∠1=∠3=45°
∵MN∥OB,
∴∠2=∠3=45°
∴∠1=∠2=45°,
∴AM=PM
∴OM=OA-AM=1-AM,PN=MN-PM=1-PM
∴OM=PN
∵∠OPC=90°,
∴∠4+∠5=90°,
又∵∠4+∠6=90°,
∴∠5=∠6
∴△OPM≌△PCN
(2)解:∵AM=PM=APsin45°=
,
∴OM=
∴S=S
矩形OBNM-2S
△POM=(1-
m)-2×
(1-
m)•
m
=
m
2-
m+1(0≤m<
).
(3)解:△PBC可能成為等腰三角形
①當P與A重合時,PC=BC=1,此時P(0,1)
②當點C在第四象限,且PB=CB時
有BN=PN=1-
∴BC=PB=
PN=
∴NC=BN+BC=1-
+
-m
由(2)知:NC=PM=
∴1-
+
-m=
整理得(
+1)m=
+1
∴m=1
∴PM=
=
,BN=1-
=1-
∴P(
,1-
)
由題意可知PC=PB不成立
∴使△PBC為等腰三角形的點P的坐標為(0,1)或(
,1-
).
分析:(1)根據(jù)∠OPC=90°和同角的余角相等,我們可得出三角形OPM和PCN中兩組對應角相等,要證兩三角形全等,必須有相等的邊參與,已知了OA=OB,因此三角形OAB是等腰直角三角形,那么三角形AMP也是個等腰三角形,AM=MP,OA=OB=MN,由此我們可得出OM=PN,由此我們可得出兩三角形全等.
(2)知道了A的坐標,也就知道了OA、OB、MN的長,在直角三角形AMP中,我們知道了AP為m,那么可用m表示出AM、MP,也就能表示出OM、BN,PN的長,那么可根據(jù)四邊形OPCB的面積=矩形的面積-三角形OMP的面積-三角形PCN的面積,來求出S,m的函數(shù)關系式.然后根據(jù)C在第一象限,得出CN的取值范圍,進而求出m的取值范圍.
(3)要分兩種情況進行討論:
當C在第一象限時,要想使PCB為等腰三角形,那么PC=CB,∠PBC=45°,因此此時P與A重合,那么P的坐標就是A的坐標.
當C在第四象限時,要想使PCB為等腰三角形,那么PB=BC,在等腰直角三角形PBN中,我們可以用m表示出BP的長,也就表示出了BC的長,然后根據(jù)(1)中的全等三角形,可得出MP=NC,那么可用這兩個含未知數(shù)m的式子得出關于m的方程來求出m的值.那么也就求出了PM、OM的長,也就得出了P點的坐標.
點評:本題考查了全等三角形的判定及等腰三角形的性質;此題的設計比較精巧,將幾何知識放在坐標系中進行考查,第1題運用相似形等幾何知識不難得證,第2小題需利用第1小問的結論來建立函數(shù)解析式,第3小題需分類討論,不要漏解,運用方程思想可以得到答案,分類討論是正確解答本題的關鍵.