【題目】已知,如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點(diǎn)P.
(1)求證:△AEB≌△CDA;
(2)求∠BPQ的度數(shù);
(3)若BQ⊥AD于Q,PQ=6,PE=2,求BE的長.
【答案】(1)見解析;(2)60°;(3)14
【解析】
(1)根據(jù)等邊三角形的性質(zhì),通過全等三角形的判定定理SAS證得結(jié)論;
(2)利用(1)中的全等三角形的對應(yīng)角相等和三角形外角的性質(zhì),即可求得∠BPQ=60°;
(3)利用(2)的結(jié)果求得∠PBQ=30°,所以由“30度角所對的直角邊是斜邊的一半”得到2PQ=BP=12,則易求BE=BP+PE=14.
(1)證明:∵△ABC是等邊三角形,
∴∠BAC=∠C=60°,AB=CA,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS);
(2)∵△ABE≌△CAD,
∴∠ABE=∠CAD,
∴∠ABE+∠BAP=∠CAD+∠BAP,
即∠BPQ=∠BAC=60°;
(3)∵BQ⊥AD,
∴∠BQP=90°,
∴∠PBQ=30°,
∴BP=2PQ=12,
∴BE=BP+PE=12+2=14
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[感知發(fā)現(xiàn)]:如圖,是一個(gè)“豬手”圖,AB∥CD,點(diǎn)E在兩平行線之間,連接BE,DE ,我們發(fā)現(xiàn):∠E=∠B+∠D
證明如下:過E點(diǎn)作EF∥AB.
∠B=∠1(兩直線平行,內(nèi)錯(cuò)角相等.)
又AB∥CD(已知)
CD∥EF(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行.)
∠2=∠D(兩直線平行,內(nèi)錯(cuò)角相等.)
∠1+∠2=∠B+∠D(等式的性質(zhì)1.)
即:∠E=∠B+∠D
[類比探究]:如圖是一個(gè)“子彈頭”圖,AB∥CD,點(diǎn)E在兩平行線之間,連接BE,DE.試探究∠E+∠B+∠D=360°.寫出證明過程.
[創(chuàng)新應(yīng)用]:
(1).如圖一,是兩塊三角板按如圖所示的方式擺放,使直角頂點(diǎn)重合,斜邊平行,請直接寫出∠1的度數(shù).
(2).如圖二,將一個(gè)長方形ABCD按如圖的虛線剪下,使∠1=120,∠FEQ=90°. 請直接寫出∠2的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(﹣2,0),則下列結(jié)論:①bc>0;②b+2a=0;③a+c>b;④16a+4b+c=0;⑤3a+c<0,其中正確結(jié)論的個(gè)數(shù)是( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市規(guī)定:出租車起步價(jià)允許行駛的最遠(yuǎn)路程為3km,超過3km的部分每千米另收費(fèi),甲說:“我乘這種出租車走了9km,付了14元.”乙說:“我乘這種出租車走了13千米,付了20元”.請你算出這種出租車的起步價(jià)是多少元?超過3km后,每千米的車費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=80°,點(diǎn)P是射線AM上的動(dòng)點(diǎn)(與A不重合),BC、BD分別平分∠ABP和∠PBN,交射線AM于點(diǎn)C、D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB∶∠ADB的度數(shù)比值是否隨之發(fā)生變化?若不變,請求出這個(gè)比值;若變化,請找出變化規(guī)律.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C,A(2,﹣2),B(6,﹣2),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿著x軸正方向以每秒2個(gè)單位的速度移動(dòng),過點(diǎn)P作PQ垂直于直線OA,垂足為點(diǎn)Q,設(shè)點(diǎn)P移動(dòng)的時(shí)間t秒(0<t<4).△OPQ與四邊形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點(diǎn)的拋物線的解析式;
(2)若將△OPQ沿著直線PQ翻折得到△O′PQ,則當(dāng)t=時(shí),點(diǎn)O′恰好在拋物線上.
(3)在(2)的條件下,記△O′PQ與四邊形OABC重疊的面積為S,求S與t的函數(shù)關(guān)系式,并注明自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=9,AD=6,∠ADC的平分線交AB于點(diǎn)E,交CB的延長線于點(diǎn)F,AG⊥DE,垂足為G.若AG=4 ,則△BEF的面積是( )
A.
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個(gè)小正方形的邊長均為1)依次進(jìn)行位似變換、軸對稱變換和平移變換后得到△A3B3C3 .
(1)△ABC與△A1B1C1的位似比等于;
(2)在網(wǎng)格中畫出△A1B1C1關(guān)于y軸的軸對稱圖形△A2B2C2;
(3)請寫出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設(shè)點(diǎn)P(x,y)為△ABC內(nèi)一點(diǎn),依次經(jīng)過上述三次變換后,點(diǎn)P的對應(yīng)點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校課外生物小組的試驗(yàn)園地是長32m、寬20m的矩形,為便于管理,現(xiàn)要在試驗(yàn)園地開辟水平寬度均為xm的小道(圖中陰影部分).
(1)如圖1,在試驗(yàn)園地開辟一條水平寬度相等的小道,則剩余部分面積為 m2(用含x的代數(shù)式表示);
(2)如圖2,在試驗(yàn)園地開辟水平寬度相等的三條小道,其中有兩條道路相互平行. 若使剩余部分面積為570m2,試求小道的水平寬度x.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com