(2009•溫州)如圖,在平面直角坐標(biāo)系中,直線AB與Y軸和X軸分別交于點A、點B,與反比例函數(shù)在第一象限的圖象交于點c(1,6)、點D(3,n).過點C作CE上y軸于E,過點D作DF上x軸于F.
(1)求m,n的值;
(2)求直線AB的函數(shù)解析式;
(3)求證:△AEC≌△DFB.

【答案】分析:(1)把C(1,6)代入反比例函數(shù)解析式中,可以求得m的值,再根據(jù)反比例函數(shù)的解析式求得n的值;
(2)根據(jù)C,D兩個點的坐標(biāo)即可運用待定系數(shù)法求得直線AB的解析式;
(3)再根據(jù)直線的解析式求得A,B的坐標(biāo),從而求得線段AE,CE,DF,BF的長,根據(jù)SAS即可證明兩個三角形全等.
解答:(1)解:由題意得
6=,解得m=6;
n=,解得n=2;

(2)解:設(shè)直線AB的函數(shù)解析式為y=kx+b(k≠0)
由題意得,
解得
故直線AB的函數(shù)解析式為y=-2x+8;

(3)證明:∵y=-2x+8
∴A(0,8),B (4,0)
∵CE⊥y軸,DF⊥x軸,
∴∠AEC=∠DFB=90°
∵AE=DF=8-6=2,CE=BF=4-3=1,
則△AEC≌△DFB.
點評:能夠根據(jù)點的坐標(biāo)運用待定系數(shù)法求得直線的解析式,能夠根據(jù)解析式求得點的坐標(biāo).注意:平行于x軸的線段的長等于兩個點的橫坐標(biāo)的差的絕對值,平行于y軸的線段的長度等于兩個點的縱坐標(biāo)的差的絕對值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年3月江蘇省鎮(zhèn)江市外國語學(xué)校九年級(下)月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•溫州)如圖,在平面直角坐標(biāo)系中,點A(,0),B(3,2),C(0,2).動點D以每秒1個單位的速度從點O出發(fā)沿OC向終點C運動,同時動點E以每秒2個單位的速度從點A出發(fā)沿AB向終點B運動.過點E作EF上AB,交BC于點F,連接DA、DF.設(shè)運動時間為t秒.
(1)求∠ABC的度數(shù);
(2)當(dāng)t為何值時,AB∥DF;
(3)設(shè)四邊形AEFD的面積為S.①求S關(guān)于t的函數(shù)關(guān)系式;
②若一拋物線y=-x2+mx經(jīng)過動點E,當(dāng)S<2時,求m的取值范圍(寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•溫州)如圖,在平面直角坐標(biāo)系中,點A(,0),B(3,2),C(0,2).動點D以每秒1個單位的速度從點O出發(fā)沿OC向終點C運動,同時動點E以每秒2個單位的速度從點A出發(fā)沿AB向終點B運動.過點E作EF上AB,交BC于點F,連接DA、DF.設(shè)運動時間為t秒.
(1)求∠ABC的度數(shù);
(2)當(dāng)t為何值時,AB∥DF;
(3)設(shè)四邊形AEFD的面積為S.①求S關(guān)于t的函數(shù)關(guān)系式;
②若一拋物線y=-x2+mx經(jīng)過動點E,當(dāng)S<2時,求m的取值范圍(寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省泰安市寧陽縣中考數(shù)學(xué)模擬試卷(7)(解析版) 題型:解答題

(2009•溫州)如圖,在平面直角坐標(biāo)系中,點A(,0),B(3,2),C(0,2).動點D以每秒1個單位的速度從點O出發(fā)沿OC向終點C運動,同時動點E以每秒2個單位的速度從點A出發(fā)沿AB向終點B運動.過點E作EF上AB,交BC于點F,連接DA、DF.設(shè)運動時間為t秒.
(1)求∠ABC的度數(shù);
(2)當(dāng)t為何值時,AB∥DF;
(3)設(shè)四邊形AEFD的面積為S.①求S關(guān)于t的函數(shù)關(guān)系式;
②若一拋物線y=-x2+mx經(jīng)過動點E,當(dāng)S<2時,求m的取值范圍(寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省溫州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•溫州)如圖,在平面直角坐標(biāo)系中,直線AB與Y軸和X軸分別交于點A、點B,與反比例函數(shù)在第一象限的圖象交于點c(1,6)、點D(3,n).過點C作CE上y軸于E,過點D作DF上x軸于F.
(1)求m,n的值;
(2)求直線AB的函數(shù)解析式;
(3)求證:△AEC≌△DFB.

查看答案和解析>>

同步練習(xí)冊答案