【題目】如圖,是的直徑,過(guò)點(diǎn)作的切線,點(diǎn)為上一點(diǎn),連接與交于點(diǎn),為上一點(diǎn),且滿足=,連接.
(1)求證:;
(2)過(guò)點(diǎn)作的垂線,垂足為,若,,求的半徑長(zhǎng).
【答案】(1)見(jiàn)詳解;(2).
【解析】
(1)先證明,再證明,最后根據(jù)內(nèi)接四邊形對(duì)角互補(bǔ)得出即得;
(2)連接OD,先推出,再根據(jù)相似三角形對(duì)應(yīng)邊成比例得出DF=3,最后在中設(shè)半徑為R,應(yīng)用勾股定理列出方程求解即得.
(1)∵AB為直徑
∴
∴
∵為的切線
∴
∴,
∴
∵=
∴
∴
∵在的內(nèi)接四邊形ADBE中,
∴,即
∴,即
(2)如下圖:連接OD
∵DF⊥AB,AB為直徑,
∴∠DFO=∠AEB = 90°
∵,
∴∠CBD=∠BAD
∵∠DOF=2∠BAD,
∴∠DOF=∠ABE
∴
∴'
∵
∴DF=3
設(shè)的半徑為R,則
在中,
即
解得:
所以的半徑長(zhǎng)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接:“國(guó)家衛(wèi)生城市”復(fù)檢,某市環(huán)衛(wèi)局準(zhǔn)備購(gòu)買(mǎi)A,B兩種型號(hào)的垃圾箱,通過(guò)市場(chǎng)調(diào)研得知:購(gòu)買(mǎi)3個(gè)A型垃圾箱和2個(gè)B型垃圾箱共需540元,購(gòu)買(mǎi)2個(gè)A型垃圾箱比購(gòu)買(mǎi)3個(gè)B型垃圾箱少用160元.
(1)求每個(gè)A型垃圾箱和B型垃圾箱各多少元?
(2)該市現(xiàn)需要購(gòu)買(mǎi)A,B兩種型號(hào)的垃圾箱共30個(gè),其中買(mǎi)A型垃圾箱不超過(guò)16個(gè).
①求購(gòu)買(mǎi)垃圾箱的總花費(fèi)w(元)與A型垃圾箱x(個(gè))之間的函數(shù)關(guān)系式;
②當(dāng)買(mǎi)A型垃圾箱多少個(gè)時(shí)總費(fèi)用最少,最少費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,如圖:(1)以為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交、于點(diǎn)和;(2)分別以、為圓心,大于的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn);(3)連結(jié)并延長(zhǎng)交于點(diǎn).根據(jù)以上作圖過(guò)程,下列結(jié)論中錯(cuò)誤的是( )
A.是的平分線B.
C.點(diǎn)在的中垂線上D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,函數(shù)(x>0)的圖象與直線l1:交于點(diǎn)A,與直線l2:x=k交于點(diǎn)B.直線l1與l2交于點(diǎn)C.
(1) 當(dāng)點(diǎn)A的橫坐標(biāo)為1時(shí),則此時(shí)k的值為 _______;
(2) 橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn). 記函數(shù)(x>0) 的圖像在點(diǎn)A、B之間的部分與線段AC,BC圍成的區(qū)域(不含邊界)為W.
①當(dāng)k=3時(shí),結(jié)合函數(shù)圖像,則區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù)是_________;
②若區(qū)域W內(nèi)恰有1個(gè)整點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出k的取值范圍:___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E是邊AD上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A,D不重合),連接EO并延長(zhǎng),交BC于點(diǎn)F,連接BE,DF.下列說(shuō)法:
① 對(duì)于任意的點(diǎn)E,四邊形BEDF都是平行四邊形;
② 當(dāng)∠ABC>90°時(shí),至少存在一個(gè)點(diǎn)E,使得四邊形BEDF是矩形;
③ 當(dāng)AB<AD時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是菱形;
④ 當(dāng)∠ADB=45°時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是正方形.
所有正確說(shuō)法的序號(hào)是:_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=(a﹣1)x2+3ax+1圖象上的四個(gè)點(diǎn)的坐標(biāo)為(x1,m),(x2,m),(x3,n),(x4,n),其中m<n.下列結(jié)論可能正確的是( 。
A.若a>,則 x1<x2<x3<x4
B.若a>,則 x4<x1<x2<x3
C.若a<﹣,則 x1<x3<x2<x4
D.若a<﹣,則 x3<x2<x1<x4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線M:y=-x2+2bx+c與直線l:y=9x+14交于點(diǎn)A,其中點(diǎn)A的橫坐標(biāo)為-2.
(1)請(qǐng)用含有b的代數(shù)式表示c: ;
(2)若點(diǎn)B在直線l上,且B的橫坐標(biāo)為-1,點(diǎn)C的坐標(biāo)為(b,5).
①若拋物線M還過(guò)點(diǎn)B,直接寫(xiě)出該拋物線的解析式;
②若拋物線M與線段BC恰有一個(gè)交點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2021年我省開(kāi)始實(shí)施“ 3+1+2”高考新方案,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門(mén)為統(tǒng)考科目( 必考), 物理和歷史兩個(gè)科目中任選 1門(mén),另外在思想政治、地理、化學(xué)、生物四門(mén)科目中任選 2門(mén),共計(jì)6門(mén)科目,總分750 分, 假設(shè)小麗在選擇科目時(shí)不考慮主觀性.
(1)小麗選到物理的概率為 ;
(2)請(qǐng)用“畫(huà)樹(shù)狀圖”或“列表”的方法分析小麗在思想政治、 地理、 化學(xué)、生物四門(mén)科目中任選 2門(mén)選到化學(xué)、生物的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說(shuō)法中,錯(cuò)誤的是( )
A. 拋物線于x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0)
B. 拋物線與y軸的交點(diǎn)坐標(biāo)為(0,6)
C. 拋物線的對(duì)稱軸是直線x=0
D. 拋物線在對(duì)稱軸左側(cè)部分是上升的
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com