如圖,⊙O的半徑R=5cm,點A為⊙O上一點,連接AP交于⊙O點B,PB=4cm,AB=6cm.請計算P點到圓心O的距離.

【答案】分析:此題要作弦的弦心距,連接一條半徑.根據(jù)垂徑定理和勾股定理求得弦的弦心距,再進(jìn)一步根據(jù)勾股定理進(jìn)行計算.
解答:解:連接OB,過點O作OC⊥AB于點C,
∴BC=3,
∵OB=5,
,
在三角形OPC中,,
所以P點到圓心O的距離cm.
點評:注意:作弦的弦心距是圓中的一條重要的輔助線之一.熟練運用勾股定理和垂徑定理進(jìn)行計算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5cm,圓心O到弦AB的距離OD為3cm,則弦AB的長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,⊙O的半徑OD經(jīng)過弦AB(不是直徑)的中點C,過AB的延長線上一點P作⊙O的切線PE,E為切點,PE∥OD;延長直徑AG交PE于點H;直線DG交OE于點F,交PE于點K.
(1)求證:四邊形OCPE是矩形;
(2)求證:HK=HG;
(3)若EF=2,F(xiàn)O=1,求KE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為1,點P是⊙O上一點,弦AB垂直平分線段OP.點D是弦AB所對劣弧上的任一點(異于點A、B),過點D作DE⊥AB于點E,以點D為圓心,DE長為半徑作⊙D,連接AD、BD.分別過點A、B作⊙D的切線,兩條切線交于點C.下列結(jié)論:
①AB=
3
;②∠ACB為定值60°;③∠ADB=2∠ACB;④設(shè)△ABC的面積為S,若
S
DE2
=4
3
則△ABC的周長為3.
其中正確的有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為3cm,B為⊙O外一點,OB交⊙O于點A,AB=OA,動點P從點A出發(fā),以πcm/s的速度在⊙O上按逆時針方向運動一周回到點A立即停止.當(dāng)點P運動的時間為( 。﹕時,BP與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為5cm,若AB是⊙O的一條弦,AB的弦心距OM為3cm,則弦AB的長是
8
8
cm.

查看答案和解析>>

同步練習(xí)冊答案