• <tt id="juq6l"><nobr id="juq6l"></nobr></tt>
    <li id="juq6l"><dl id="juq6l"></dl></li>
    <li id="juq6l"><input id="juq6l"></input></li>
    如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<x2,與y軸交于點(diǎn)C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個(gè)根.
    (1)求拋物線的解析式;
    (2)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN∥BC,交AC于點(diǎn)N,連接CM,當(dāng)△CMN的面積最大時(shí),求點(diǎn)M的坐標(biāo);
    (3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

    【答案】分析:(1)根據(jù)一元二次方程解法得出A,B兩點(diǎn)的坐標(biāo),再利用交點(diǎn)式求出二次函數(shù)解析式;
    (2)首先判定△MNA∽△BCA.得出,進(jìn)而得出函數(shù)的最值;
    (3)分別根據(jù)當(dāng)AF為平行四邊形的邊時(shí),AF平行且等于DE與當(dāng)AF為平行四邊形的對(duì)角線時(shí),分析得出符合要求的答案.
    解答:解:(1)∵x2-4x-12=0,
    ∴x1=-2,x2=6.
    ∴A(-2,0),B(6,0),
    又∵拋物線過點(diǎn)A、B、C,故設(shè)拋物線的解析式為y=a(x+2)(x-6),
    將點(diǎn)C的坐標(biāo)代入,求得
    ∴拋物線的解析式為;

    (2)設(shè)點(diǎn)M的坐標(biāo)為(m,0),過點(diǎn)N作NH⊥x軸于點(diǎn)H(如圖(1)).
    ∵點(diǎn)A的坐標(biāo)為(-2,0),點(diǎn)B的坐標(biāo)為(6,0),
    ∴AB=8,AM=m+2,
    ∵M(jìn)N∥BC,∴△MNA∽△BCA.

    ,

    ,
    =
    =
    ∴當(dāng)m=2時(shí),S△CMN有最大值4.
    此時(shí),點(diǎn)M的坐標(biāo)為(2,0);

    (3)∵點(diǎn)D(4,k)在拋物線上,
    ∴當(dāng)x=4時(shí),k=-4,
    ∴點(diǎn)D的坐標(biāo)是(4,-4).
    ①如圖(2),當(dāng)AF為平行四邊形的邊時(shí),AF平行且等于DE,
    ∵D(4,-4),∴DE=4.
    ∴F1(-6,0),F(xiàn)2(2,0),
    ②如圖(3),當(dāng)AF為平行四邊形的對(duì)角線時(shí),設(shè)F(n,0),
    ∵點(diǎn)A的坐標(biāo)為(-2,0),
    則平行四邊形的對(duì)稱中心的橫坐標(biāo)為:,
    ∴平行四邊形的對(duì)稱中心坐標(biāo)為(,0),
    ∵D(4,-4),
    ∴E'的橫坐標(biāo)為:-4+=n-6,
    E'的縱坐標(biāo)為:4,
    ∴E'的坐標(biāo)為(n-6,4).
    把E'(n-6,4)代入,得n2-16n+36=0.
    解得,,
    綜上所述F1(-6,0),F(xiàn)2(2,0),F(xiàn)3(8-2,0),F(xiàn)4(8+2,0).
    點(diǎn)評(píng):此題主要考查了二次函數(shù)的綜合應(yīng)用,二次函數(shù)的綜合應(yīng)用是初中階段的重點(diǎn)題型,特別注意利用數(shù)形結(jié)合是這部分考查的重點(diǎn),也是難點(diǎn),同學(xué)們應(yīng)重點(diǎn)掌握.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),設(shè)拋物線的頂點(diǎn)為D.
    (1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo);
    (2)以B、C、D為頂點(diǎn)的三角形是直角三角形嗎?為什么?
    (3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)指出符合條件的點(diǎn)P的位置,并直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<x2,與y軸交于點(diǎn)C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個(gè)根.
    (1)求拋物線的解析式;
    (2)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN∥BC,交AC于點(diǎn)N,連接CM,當(dāng)△CMN的面積最大時(shí),求點(diǎn)M的坐標(biāo);
    (3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    (2012•歷下區(qū)一模)如圖,拋物線與x軸交于A(-1,0),B(4,0)兩點(diǎn),與y軸交于C(0,3),M是拋物線對(duì)稱軸上的任意一點(diǎn),則△AMC的周長(zhǎng)最小值是
    10
    +5
    10
    +5

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,拋物線與y軸交于點(diǎn)A(0,4),與x軸交于B、C兩點(diǎn).其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
    (1)求拋物線的解析式;
    (2)直線AC上是否存在點(diǎn)D,使△BCD為直角三角形.若存在,求所有D點(diǎn)坐標(biāo);反之說理;
    (3)點(diǎn)P為x軸上方的拋物線上的一個(gè)動(dòng)點(diǎn)(A點(diǎn)除外),連PA、PC,若設(shè)△PAC的面積為S,P點(diǎn)橫坐標(biāo)為t,則S在何范圍內(nèi)時(shí),相應(yīng)的點(diǎn)P有且只有1個(gè).

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,拋物線與x軸交于A、B(6,0)兩點(diǎn),且對(duì)稱軸為直線x=2,與y軸交于點(diǎn)C(0,-4).
    (1)求拋物線的解析式;
    (2)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),連接MA、MC,當(dāng)△MAC的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo);
    (3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說明理由.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案