在Rt△ABC的直角邊AC邊上有一動點P(點P與點A,C不重合),過點P作直線截得的三角形與△ABC相似,滿足條件的直線最多有


  1. A.
    1條
  2. B.
    2條
  3. C.
    3條
  4. D.
    4條
D
分析:過點P作直線與另一邊相交,使所得的三角形與原三角形已經(jīng)有一個公共角,只要再作一個等于△ABC的另一個角就可以.
解答:解:過點P作AB的垂線,或作AC的垂線,作AB的平行線,作∠PDC=∠A.
故選D.
點評:本題主要考查三角形相似的條件,有兩個角相等的三角形相似.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、在Rt△ABC的直角邊AC邊上有一動點P(點P與點A,C不重合),過點P作直線截得的三角形與△ABC相似,滿足條件的直線最多有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,D點在Rt△ABC的直角邊上BC上,且BD=2,DC=3,若AB=m,AD=n,那么m2-n2=
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的圓心在Rt△ABC的直角邊AC上,⊙O經(jīng)過C、D兩點,與斜邊AB交于點E精英家教網(wǎng),連接BO、ED,有BO∥ED,作弦EF⊥AC于G,連接DF.
(1)求證:AB為⊙O的切線;
(2)若⊙O的半徑為5,sin∠DFE=
35
,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•中江縣二模)如圖,⊙O的圓心在Rt△ABC的直角邊AC上,⊙O經(jīng)過C、D兩點,與斜邊AB交于點E,連接BO、ED,且BO∥ED,作弦EF⊥AC于G,連接DF.
(1)求證:AB為⊙O的切線;
(2)連接CE,求證:AE2=AD•AC;
(3)若⊙O的半徑為5,sin∠DFE=
35
,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(湖北荊州) 題型:解答題

(8分)如圖,⊙O的圓心在Rt△ABC的直角邊AC上,⊙O經(jīng)過C、D兩點,與斜邊AB交于點E,連結BO、ED,有BO∥ED,作弦EF⊥AC于G,連結DF.

(1)求證:AB為⊙O的切線;
(2)若⊙O的半徑為5,sin∠DFE=,求EF的長.

查看答案和解析>>

同步練習冊答案